期刊文献+

有界区间上的随机非局部Ginzburg-Landau方程

Stochastic Nonlocal Ginzburg-Landau Equation on Bounded Intervals
下载PDF
导出
摘要 研究有界区间上随机非局部Ginzburg-Landau方程.通过在适当的加权空间上考虑,克服有界区间上非局部Laplace算子带来的困难,运用一系列精致估计获得系统的某些有界性,利用胎紧解决噪声给系统带来的通常意义下的紧性问题,最终利用Skorokhod定理以及鞅表示定理获得系统鞅解的存在性. This paper deals with the stochastic nonlocal Ginzburg-Landau equation on bounded intervals. By introducing a weighted sobolev space,it overcomes the difficulties caused by the nonlocal Laplacian operator on bounded domains. By using a series of precise estimate,the boundedness of the system is established. By using the tightness to solve the general compact problem caused by noise,it finally obtains the existence of martingale solutions for the system by Skorokhod embedding theorem and representation theorem.
作者 何兴 陈光淦 HE Xing;CHEN Guanggan(College of Jinjiang, Sichuan University, Pengshan 620860, Sichuan;College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期450-455,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11571245和11401409) 四川省教育厅重点科研项目(15ZA0031)
关键词 随机Ginzburg-Landau方程 有界区间 非局部Laplace算子 鞅解 stochastic Ginzburg-Landau equation bounded intervals nonlocal laplacian operator martingale solution
  • 相关文献

参考文献1

二级参考文献17

  • 1Leibenson L S.General problem of the movement of a compressible fluid in a porous medium[J].Izv Akad Nauk SSSR Geogr Geophys,1983,9:7-10. 被引量:1
  • 2Jiang D,Gao W.Upper and lower solution method and a singular boundary value problem for the one-dimensional p-Laplacian[J].J Math Anal Appl,2000,252:631-648. 被引量:1
  • 3Oldham K B,Spanier J.The Fractional Calculus[M].New York:Academic Press,1974. 被引量:1
  • 4Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier Science,2006. 被引量:1
  • 5Kilbas A A,Trujillo J J.Differential equations of fractional order:methods,results and problems Ⅱ[J].Appl Anal,2002,81:435-493. 被引量:1
  • 6Bai Z,Lü H.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005,311:495-505. 被引量:1
  • 7Zhang S.Positive solution for boundary value problem of nonlinear fractional differential equations[J].Electron J Diff Eqns,2006,36:1-12. 被引量:1
  • 8Agarwal R P,O' Regan D,Stanek S.Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[J].J Math Anal Appl,2010,371:57-68. 被引量:1
  • 9Yang W.Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions[J].Comput Math Appl,2012,63 (1):288-297. 被引量:1
  • 10Cabada Alberto,Wang G.Positive solutions of nonlinear fractional differential equations with integral boundary value conditions[J].J Math Anal Appl 2012,389(1):403-411. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部