摘要
研究有界区间上随机非局部Ginzburg-Landau方程.通过在适当的加权空间上考虑,克服有界区间上非局部Laplace算子带来的困难,运用一系列精致估计获得系统的某些有界性,利用胎紧解决噪声给系统带来的通常意义下的紧性问题,最终利用Skorokhod定理以及鞅表示定理获得系统鞅解的存在性.
This paper deals with the stochastic nonlocal Ginzburg-Landau equation on bounded intervals. By introducing a weighted sobolev space,it overcomes the difficulties caused by the nonlocal Laplacian operator on bounded domains. By using a series of precise estimate,the boundedness of the system is established. By using the tightness to solve the general compact problem caused by noise,it finally obtains the existence of martingale solutions for the system by Skorokhod embedding theorem and representation theorem.
作者
何兴
陈光淦
HE Xing;CHEN Guanggan(College of Jinjiang, Sichuan University, Pengshan 620860, Sichuan;College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2018年第4期450-455,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11571245和11401409)
四川省教育厅重点科研项目(15ZA0031)