期刊文献+

有限域上与k-型高斯正规基相关的自对偶正规基 被引量:2

A Class of Self-dual Normal Bases Related to the Type k Gaussian Period Normal Basis over Finite Fields
下载PDF
导出
摘要 设q为素数p的方幂,n为正整数,Fqn是q元有限域Fq的n次扩域,α∈Fqn生成Fqn在Fq上的k-型高斯正规基.给出了存在a,b∈Fq使得β=a+bα生成Fqn在Fq上自对偶正规基,以及存在a,b∈Fq,使得a+bα和a+bαn2生成Fqn在Fq上互为对偶的正规基的等价刻划. Let q be a power of the prime p and ,q be the finite field with q elements. Suppose that a∈qn generates the type k Gaussian period normal basis of qn over q In the present paper, we obtain the necessary and sufficient conditions for there exist some a, b ∈q such that β = a + ba generates a self-dual normal basis of qn over q, or a + ba and a + bct~_ generate the two dual normal bases of qn over q
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期663-668,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10990011) 教育部博士点专项基金(20095134120001) 四川省杰出青年学术技术带头人培育计划(2011JQ0037) 新疆维吾尔自治区普通高校重点学科开放性课题(2012ZDXK22)资助项目
关键词 有限域 正规基 自对偶正规基 迹映射 复杂度 finite field normal basis self-dual normal basis trace map complexity
  • 相关文献

参考文献2

二级参考文献20

  • 1廖群英,孙琦.有限域上最优正规基的乘法表[J].数学学报(中文版),2005,48(5):947-954. 被引量:8
  • 2廖群英,孙琦.有限域上存在弱自对偶正规基的一个充要条件[J].数学年刊(A辑),2007,28(2):273-280. 被引量:3
  • 3Mullin, R., Onyszchuk, I., Vanstone, S., Wilson, R.: Optimal Normal Bases in GF(p^n). Discrete Applied Math., 22, 149-161 (1988-1989) 被引量:1
  • 4Blake, I., Gao, X. H., Mullin, R., Vanstone, S., Yaghoobian, T.: Applications of Finite Fields, Kluwer Academic Publishers, Boston, Dordrecht, Lancaster, 1993 被引量:1
  • 5Lidl, R., Niederreiter, H.: Finite Fields, Cambrige University Press, Cambrige, UK, 1987 被引量:1
  • 6Gao, S. X.: Abelian Groups, Gauss Periods, and Normal Bases. Finite Fieldes and Their Applications,7(1), 149-161 (2001) 被引量:1
  • 7Feisel, S., Gathen, J, V. Z., Shokro LLahi, M. A,: Normal Bases via General Gauss Periods. Mathematics of Computation, 68(225), 271-290 (1999) 被引量:1
  • 8Agnew, G., Mullin, R., Onyszchuk, I., Vanstone, S.: An Implementation for a Fast Public Key Cryptosystem.J. of Cryptology, 3, 63-79 (1991) 被引量:1
  • 9Rosati, T.: A-high speed data encryption processor for public key Cryptography. Proc. of IEEE Custom Integrated Cireuites Conference, San diego, 1231-1235 (1989) 被引量:1
  • 10Gao, S., Vanstone, S. A.: On Orders of Optimal Normal Basis Generators. Mathematics of Computation,64(211), 1227-1233 (1995) 被引量:1

共引文献13

同被引文献26

  • 1廖群英.关于有限域上一类特殊的对偶基[J].四川大学学报(自然科学版),2005,42(1):41-46. 被引量:8
  • 2Mullin R, Onyszchuk I, Vanstone S, et al. Optimal normal bases in GF(pm) [ J]. Discrete Appl Math,1988/1989,22:149-161. 被引量:1
  • 3Gao S, Lenstra H W. Optimal normal bases [ J ]. Des Codes Cryptogr, 1992,2:315 -323. 被引量:1
  • 4Lidl R, Niederreiter H. Finite Fields[ M]. Cambridge:Cambridge University Press, 1987. 被引量:1
  • 5Lidl R, Niederreiter H. Finite Fields and Their Applications[ M]. 2nd Ed. Cambrige:Cambrige University Press, 1994. 被引量:1
  • 6Wassermann A. Konstruktion von normalbasen [ J ]. Bayreuther Math Scriften, 1990,31 : 155 - 164. 被引量:1
  • 7Lempel A, Weinberger M. Self - complementary normal basis in finite fields SIAM [ J ]. Discrete Math, 1988,1 : 193 - 198. 被引量:1
  • 8Gao S. Normal Bases over Finite Fields[ D ]. Ontario:University of Waterloo, 1993. 被引量:1
  • 9Liao Q Y, Sun Q. Normal bases and their dual -bases over finite fields[J]. Acta Mat Sinica:English Ser,2006,22(3) :845 -848. 被引量:1
  • 10Nogami Y, Nasu H, Morikawa Y, et al. A method for constructing a self - dual normal basis in odd characteristic extension fields [ J ]. Finite Fields and Their Appl,2008,14:867 - 876. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部