期刊文献+

有限域上高斯正规基及其对偶基的复杂度的准确计算关系(英文)

The Explicit Relationship of the Complexities Between Gauss Normal Bases and Their Dual Bases Over Finite Fields
原文传递
导出
摘要 熟知,作为一类低复杂度的正规基,有限域上的高斯正规基及其对偶基被广泛应用于编码、密码学、符号处理等领域.尤其确定高斯正规基及其对偶基的乘法表和复杂度问题,成为近年来的研究热点之一.本文完全确定了有限域上高斯正规基及其对偶基的乘法表和复杂度的对应关系,由此给出了文献[Acta Math.Sin.,Engl.Ser.,2006,22(3):845-848;Finite Fields Appl.,2007,13(4):411-417]中定理2的一个更为简单的证明. It is well known that as a class of lower complexity normal bases over finite fields, Gauss normal bases and their dual bases are widely used in applications of finite fields in areas such as coding theory, cryptography and signal processing. Especially, to determine the multiplication table and complexity for Gauss normal bases and their dual bases is very interesting in recent years. In the present paper, the explicit relationship of the complexity between Gauss normal bases and their dual bases over finite fields is obtained. As corollaries, the explicit complexity for the dual basis of Type (n, k) (= 1, 2) Gauss normal basis over finite fields is obtained, which also gives a simpler proof for Theorems 2 in [Acta Math. Sin., Engl. Ser., 2006, 22(3): 845-848; Finite Fields Appl., 2007, 13(4): 411-417].
出处 《数学进展》 CSCD 北大核心 2016年第5期727-737,共11页 Advances in Mathematics(China)
基金 supported by NSFC(No.11401408) Sichuan Province Foundation of China(No.14ZA0034) Project of Science and Technology Department of Sichuan Province(No.2016JY0134)
关键词 有限域 正规基 对偶基 高斯正规基 复杂度 乘法表 finite field normal basis dual basis Gauss normal basis complexity multiplication table
  • 相关文献

参考文献1

二级参考文献15

  • 1Mullin, R., Onyszchuk, I., Vanstone, S., Wilson, R.: Optimal Normal Bases in GF(p^n). Discrete Applied Math., 22, 149-161 (1988-1989) 被引量:1
  • 2Blake, I., Gao, X. H., Mullin, R., Vanstone, S., Yaghoobian, T.: Applications of Finite Fields, Kluwer Academic Publishers, Boston, Dordrecht, Lancaster, 1993 被引量:1
  • 3Lidl, R., Niederreiter, H.: Finite Fields, Cambrige University Press, Cambrige, UK, 1987 被引量:1
  • 4Gao, S. X.: Abelian Groups, Gauss Periods, and Normal Bases. Finite Fieldes and Their Applications,7(1), 149-161 (2001) 被引量:1
  • 5Feisel, S., Gathen, J, V. Z., Shokro LLahi, M. A,: Normal Bases via General Gauss Periods. Mathematics of Computation, 68(225), 271-290 (1999) 被引量:1
  • 6Agnew, G., Mullin, R., Onyszchuk, I., Vanstone, S.: An Implementation for a Fast Public Key Cryptosystem.J. of Cryptology, 3, 63-79 (1991) 被引量:1
  • 7Rosati, T.: A-high speed data encryption processor for public key Cryptography. Proc. of IEEE Custom Integrated Cireuites Conference, San diego, 1231-1235 (1989) 被引量:1
  • 8Gao, S., Vanstone, S. A.: On Orders of Optimal Normal Basis Generators. Mathematics of Computation,64(211), 1227-1233 (1995) 被引量:1
  • 9Gao, S., Lenstra, H. W.: Optimal Normal Bases. Designs, Codes and Cryptology, 2, 315-323 (1992) 被引量:1
  • 10Liao, Q. Y., Sun, Q.: On multiplication tables of optimal normal bases over finite fields. Acta Mathematica Sinica, Chinese Series, 48(5), 947-954 (2005) 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部