期刊文献+

三类低复杂度基及其对偶基

The three low complexity bases and their dual bases
下载PDF
导出
摘要 设N={α_(0),α_(1),…,α_(n-1)}是E在F上的一组基,构造了一类给定乘法表及复杂度为3n-2的低复杂度正规基,根据迹函数和乘法表的相关概念,证明其对偶基M的生成元的形式,并证明了对偶基的复杂度为3n-2或3n-3.计算了E在F上的伪自对偶多项式基和弱自对偶多项式基的复杂度.为密码学领域寻找优化的算法,选择合适的基提供了理论依据. Suppose that N={α_(0),α_(1),…,α_(n-1)}is a basis of E over F,some low complexity normal bases with complexity 3 n-2 was constructed and multiplication table was given.According to the related concepts of the trace function and multiplication table,it proved that the form of the generator of their dual basis and their dual bases has complexity 3 n-2 or 3 n-3.Furthermore,it calculated the complexity of the pseudo-self-dual polynomial bases and the weak self-dual polynomial bases of E over F.This provides a theoretical basis for finding optimized algorithms and selecting appropriate bases in the field of cryptography.
作者 张妍 苏丹丹 ZHANG Yan;SU Dandan(School of Mathematics,Liaoning Normal University,Dalian 116081,China;School of Cultural Tourism and Creativity,Foshan Polytechnic,Foshan 528000,China)
出处 《辽宁师范大学学报(自然科学版)》 CAS 2024年第1期21-28,共8页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助重大项目(10990011) 校级重点项目(KY2020Z02) 校级高层次人才项目(KY2022G03)。
关键词 正规基 多项式基 对偶基 复杂度 normal basis polynomial basis dual basis complexity
  • 相关文献

参考文献3

二级参考文献25

  • 1LiaoQY SunQ.Onmultiplicationtablesofnormalbasesandtheir-dualbasesoverfinitefields[J].数学进展,2004,4:499-501. 被引量:1
  • 2Mullin R, Onyszchuk I, VanstoneS, etal. Optimal nornal bases inGF(pn)[J]. Discrete Applied Math, 1988-1989, 22:149 - 161.?A 被引量:1
  • 3Blake I, Gao X H, Mullin R, et al. Applications of finite fields[M]. New York:Kluwer Academic Publishers, 1993. 被引量:1
  • 4Lidl R, Niederreiter H. Finite fields[M]. Cambridge:Cambridge University Press, 1987. 被引量:1
  • 5Agnew G, Mullin R, Onyszchuk I, et al. An implementation for a fast public key cryptosystem[J ]. J of Cryptology,1991, 3: 63 - 79. 被引量:1
  • 6Rosati T. A high speed data encryption processor for public key cryptography[J]. Proc. of IEEE Custom Integrated Circuites Conference San diego, 1989:1231 - 1235. 被引量:1
  • 7Gao S, Lenstra H W. Optimal normal bases[J]. Disigns, Codes and Cryptology, 1992, 2:315 - 323. 被引量:1
  • 8Wang C. An algorithm to design finit field multipliers using a self-dual normal basis[J]. IEEE Trans. Comput, 1989, 38:1457 - 1460. 被引量:1
  • 9Jungnickel D, Menezes A, Vanstone S. On the number of self-dual bases of GF(qn) over GF(q) [J ]. Proc. Math. Soc,1990, 109:23 - 29. 被引量:1
  • 10Mullin, R., Onyszchuk, I., Vanstone, S., Wilson, R.: Optimal Normal Bases in GF(p^n). Discrete Applied Math., 22, 149-161 (1988-1989) 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部