摘要
应用A-值线性算子T:H→l2(A),刻画了H中标准框架、正规紧标准框架及两个互为对偶的标准框架,讨论了A-值线性、有界、可逆及正的框架算子S=T*T的等价性质,证明了模H的标准框架与它的典型对偶标准框架是正规紧标准框架的充分必要条件是框架算子S=I.
Canonical frames, normalized tight canonical frames, and two canonical frames dual to each other have been characterized by using A-value linear operator T:H→l^2 (A); the linearity, boundary and reversibility of the A-value, as well as the equivalence of positive frame operator S =T * T have also been discussed. It is proved that, if and only if frame operator S=I, the sufficient and necessary condition for the canonical frames in H and its typical dual canonical frame to be normalized tight canonical frames.
出处
《中北大学学报(自然科学版)》
EI
CAS
2006年第2期168-170,共3页
Journal of North University of China(Natural Science Edition)
基金
山西省重点扶持学科基金资助项目(20055026)