期刊文献+

(n,d)-内射模与Morita对偶 被引量:1

(n,d)-Injective Modules and Morita Duality
下载PDF
导出
摘要 证明了在Morita对偶之下,自反模是(n,d)-内射的((n,d)-投射的)当且仅当它的Morita偶是(n,d)-投射的((n,d)-内射的),以及右(n,d)-环与左余(n,d)-环,(弱)n-遗传模与(弱)n-余遗传模都是互为对偶的.特别地,自反模是内射的(余遗传的)当且仅当它的偶是(0,0)-投射的(0-遗传的). Under Morita duality, every reflexive module is (n,d)- injective ((n,d)- projective) if and only if its Morita dual is (n,d)-projective ((n,d) -injective) ; right (n,d) -rings and left co- (n, d) -rings, (week) n-hereditary module and (week) n-cohereditary module are Morita dualities. In particular, every reflexive module is injective (cohereditary) if and only if its dual is (0, 0) -projective (0-hereditary).
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期1-5,共5页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省教育厅A类科技项目(JA05212) 福建师范大学青年教师科研扶苗基金项目(F029)
关键词 MORITA对偶 (n d)-内射模 (n d)-投射模 Morita duality (n,d) -injective module (n,d) -projective module
  • 相关文献

参考文献10

  • 1Anderson F W, Fuller K R. Ring and Categories of Modules [M]. 2nd Edition. New Youk: Spring-Verlag, 1992. 被引量:1
  • 2Xue W. On Morita duality [J]. Bull. Austral. Math. Soc., 1994, 49: 35-46. 被引量:1
  • 3Zhou D. On n-coherent rings and (n,d) -rings [J]. Comm. Algebra, 2004, 32 (6): 2425-2441. 被引量:1
  • 4Xue W. On presented modules and almost excellent extensions [J]. Comm. Algebra, 1999, 27: 1091-1102. 被引量:1
  • 5周德旭.n-凝聚环的若干刻划[J].福建师范大学学报(自然科学版),2003,19(4):9-12. 被引量:9
  • 6Hiremath V. Cofinitely generated and cofinitely related modules [J]. Acta Math. Acad. Sci. Hungar, 1982, 39: 1-9. 被引量:1
  • 7Xue W. Rings with Morita Dulity, Lect. Notes Math. 1523 [C]. Berlin, Heidelberg and New York: Springer-Verlag, 1992. 被引量:1
  • 8Xue W. Injective envelopes and flat covers of modules over commutative ring [J]. J. Pure Appl. Algebra, 1996,109: 213-220. 被引量:1
  • 9Shrikhande M S. On hereditary and cohereditary modules [J]. Cand. J. Math. , 1973, 25: 892-896. 被引量:1
  • 10Stenstrom B. Rings of Quotients [M]. New York: Spring-Verlag, 1975. 被引量:1

二级参考文献8

  • 1[1]Anderson F W, Fuller K R. Ring and Categories of Modules:2nd edition[M]. New York: Spring-Verlag, 1992. 被引量:1
  • 2[2]Enochs E E, Rozas J R G, Oynarte L. Covering morphisms[J]. Comm.Algebra, 2000,28:3823-3835. 被引量:1
  • 3[3]Costa D L. Parameterizing families of non-noetherian Rings[J]. Comm. Algebra,1994,22: 3997-4011. 被引量:1
  • 4[4]Chen J, Ding N. On n-coherent rings[J]. Comm. Algebra,1996,24: 3211-3216. 被引量:1
  • 5[5]Xue W. On presented modules and almost excellent extensions[J].Comm. Algebra,1999,27: 1091-1102. 被引量:1
  • 6[6]Rotman J J. An Introduction to Homological Algebra[M].Florida: Academic Press, 1979. 被引量:1
  • 7[7]Goodearl K R. Ring Theory[M]. New York: Marcal Dekker,1976. 被引量:1
  • 8[8]Glaz S. Commutative Coherent Rings[M]. Berlin: Springer-Verlag, 1989. 被引量:1

共引文献8

同被引文献9

  • 1LEE T,ZHOU Y.Modules which are invariant under automorphisms of their injective hulls[J].J Algebra and Its Applications,2013(12):125-159. 被引量:1
  • 2SINGH S,SRIVASTAVA A K.Dual automorphism-invariant modules[J].J Algebra,2012(371):262-275. 被引量:1
  • 3QUYNH T C.KOSAN M T.On automorphism-invariant modules[J].J Algebra and Its Applications,2015(14):1550074. 被引量:1
  • 4ALAHMADI A,ER N,JAIN S K.Modules which are invariant under monomorphisms of their injective hulls[J].J Aust Math Soc,2005,79(3):349-360. 被引量:1
  • 5ASENSIO P A G,KESKIN D,SRIVASTAVA A K.Modules invariant under automorphisms of their covers and envelopes[J].J Mathematics,2015(206):457-482. 被引量:1
  • 6SELVARAJ C,SANTHAKUMAR S.A note on dual automorphism invariant modules[J].J Algebra and Its Applications,2017(16):1750024. 被引量:1
  • 7ANDERSON F W,FULLER K R.Ring and categories of modules[M].2nd ed.New York:Spring-Verlag,1992. 被引量:1
  • 8XUE W.Rings with Morita Duality[M].New York:Springer-Verlag,1992. 被引量:1
  • 9MICHLER G O,VILLAMAYOR O E.On rings whose simple modules are injective[J].J Algebra,1973(25):185-201. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部