期刊文献+

手掌静脉识别典型波长选择 被引量:27

Selection of Typical Wavelength for Palm Vein Recognition
原文传递
导出
摘要 目前的手掌静脉识别系统均采取主动光源来获取掌脉图像,光源波长的选择直接影响掌脉图像的清晰度与识别性能。典型的掌脉识别成像波长为760,850,890,940nm,但没有指出哪种波长识别性能最佳。从两个角度解决此问题,从识别特征提取角度,建立了基于Fisher判别率的掌脉成像清晰度模型,对4种波长拍摄的掌脉清晰度进行比较;从特征匹配角度,以3种典型的生物特征识别算法对4种波长拍摄的掌脉图像进行识别性能比较。在包含4种波长共2400幅掌脉图像的自建图库中进行实验,模型选择和典型算法实验结果都表明,850nm优于其他3种波长。证明了850nm拍摄的掌脉图像的识别性能最佳。 Most of current palm vein recognition systems use an active light source to acquire images. The choice of light-source wavelength directly affects the definition of palm vein image and recognition performance. Typical wavelength of palm vein recognition is 760, 850, 890, 940 nm, while few works have been done on investigating which one is the optimal wavelength for palm vein recognitions. It is solved from two angles. From the angle of feature extraction, the model of palm vein image definition is established and palm vein definition of the four wavelengths is compared according to the model. From the angle of feature matching, the recognition performance of palm vein image with four wavelengths separately by three typical biological identification algorithms is compared. The experiment was done in a self-build database including 2400 palm vein images with four kinds of wavelength. The experiment result of the model and 3 algorithms show that 850 nm is the optimal wavelength. Wavelength of 850 nm achieves higher palm vein recognition performance than the other three wavelengths.
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第12期133-139,共7页 Acta Optica Sinica
基金 国家自然科学基金(60972123) 高等学校博士学科点专项科研基金(20092102110002) 沈阳市科技计划(F10-213-1-00)资助课题
关键词 成像系统 波长选择 手掌静脉识别 Fisher判别率 图像清晰度 imaging system selection of wavelength palm vein recognition Fisher's discriminant ratio image definition
  • 相关文献

参考文献26

  • 1Wang Lingyu, Graham Leedham. Near-and far-infrared imaging for vein pattern biometrics[C]. IEEE International Conference on Video and Signal Based Surveillance, 2006. 52-57. 被引量:1
  • 2Masaki Watanabe. Palm Vein Authentication in Advances in Biometrics[M]. Heidelberg, Germany: Springer-Verlag, 2008. 75-88. 被引量:1
  • 3David Zhang, Guo Zhenhua, Guangming Lu et al.. Online joint palmprint and palmvein verification[J]. Expert Syst. Appl., 2011, 38(3): 2621-2631. 被引量:1
  • 4苑玮琦,冯素月.改进的非接触式在线掌纹识别模拟系统[J].光学学报,2011,31(7):114-119. 被引量:11
  • 5韩民,彭玉华,张顺利,孙伟峰.基于经验模态分解的虹膜识别[J].光学学报,2010,30(2):364-368. 被引量:15
  • 6苑玮琦,董茜.基于手部尺寸特征的手形认证方法[J].光学学报,2010,30(10):2994-2999. 被引量:9
  • 7Lin Chih-Lung, Fan Kuo-Chin. Biometric verification using thermal images of palm-dorsa vein patterns[J]. IEEE T. Circ. Syst. Vid., 2004, 14(2): 199-213. 被引量:1
  • 8Eui Chul Lee, Kang Ryoung Park. Image restoration of skin scattering and optical blurring for finger vein recognition[J]. Opt. Laser. Eng., 2011, 49(7): 816-828. 被引量:1
  • 9张大鹏, 卢光明, 郭振华. 基于手掌静脉与掌纹的近红外成像设备与身份识别方法[P]. 中国专利, 2008. 200710144916. 被引量:1
  • 10Li Qiang, Zeng Yan′an, Peng Xiaojun et al.. Curvelet-based palm vein biometric recognition[J]. Chin. Opt. Lett., 2010, 8(6): 577-579. 被引量:1

二级参考文献98

共引文献84

同被引文献304

引证文献27

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部