期刊文献+

子区域局部相位量化在掌脉识别中的应用研究 被引量:7

Study on the application of sub-region local phase quantization in palm vein recognization
下载PDF
导出
摘要 在手掌静脉识别系统中,由于人体手掌生理结构特性,容易出现图像模糊现象,导致识别性能下降。针对这一实际问题,提出一种基于子区域局部相位量化(SLPQ)的鲁棒识别方法。首先建立了LPQ特征提取的基本模型,阐述了算法流程。然后将掌脉图像分成若干子区域,提取各分区LPQ特征,并加以融合,最后利用卡方距离匹配识别。在香港理工大学、中科院自动化所和自建的掌脉图库上进行了实验测试,结果表明,当图像子区域大小为16×16像素时,该方法获得了最低的等误率,分别为0.499 2%、11.040 1%和1.356 9%,相比其他典型方法具有优势,有效提升了手掌静脉识别系统的性能,增强了系统的抗模糊性,具有实际应用价值。 In palm vein identification system,the image blur phenomenon may occur because of the physiological structure features of human palm,and this will result in poor recognization performance.Aiming at this practical problem,a robust recognization method based on sub-region local phase quantization (SLPQ) is proposed.Firstly,LPQ feature extraction basic model is established,and the process of the algorithm is described afterwards.Secondly,the palm vein image is divided into several sub-regions,and the feature of each region is extracted,then these features are fused.Finally,the chi-square distance is used for matching recognization.The presented approach was tested on the palm vein databases of Hong Kong Polytechnic University (PolyU),Chinese Academy of Sciences Institute of Automation (CASIA) and the self-buih palm vein database.Experiment results show that the proposed method can achieve the lowest equal error rates when the image sub-region size is 16 × 16 pixels for these three image databases,which are 0.4992 %,11.0401% and 1.3569%,respectively.Compared with other typical algorithms,the method proposed in this paper can effectively improve the recognization and anti-blur performance of the palm vein identification system,and has practical application value.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第3期543-549,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60972123) 辽宁省教育厅科学研究一般项目(L2013444) 辽宁工程技术大学博士启动基金(13-1121)资助项目
关键词 掌脉识别 特征提取 子区域 局部相位量化 palm vein recognization feature extraction sub-region local phase quantization (LPQ)
  • 相关文献

参考文献22

  • 1吴微,苑玮琦.手掌静脉图像识别技术综述[J].中国图象图形学报,2013,18(10):1215-1224. 被引量:17
  • 2许丽,蒋建国,詹曙,S.Ando.表情变化的三维人脸特征分析方法[J].电子测量与仪器学报,2013,27(5):450-454. 被引量:8
  • 3CHAKRABORTY S, BHATTACHARYA I, CHATFER- JEE A. A palmprint based biometric authentication sys- tem using dual tree complex wavelet transform [ J ]. Measurement, 2013, 46(10): 4179-4188. 被引量:1
  • 4LIU Z, SONG S L. An embedded real-time finger-vein recognization system for mobile devices [ J ]. IEEE Trans- actions on Consumer Electronics, 2012, 58 (2): 522-527. 被引量:1
  • 5YUKSEL A, AKARUN L, SANKUR B. Hand vein biom- etry based on geometry and appearance methods [ J ]. lET Computer Vision, 2011, 5 (6) : 398-406. 被引量:1
  • 6JIANG X B, YOU X G, YUAN Y, et al. A method using long digital straight segments for fingerprint recognization [ J]. Neurocomputing, 2012, 77 ( 1 ) : 28-35. 被引量:1
  • 7SHIN K Y, NAM G P, JEONG D S, et al. New iris recognization method for noisy iris images [ J ]. Pattern Recognization Letters, 2012, 33 (8) : 991-999. 被引量:1
  • 8ZHANG H, HU D W. A palm vein recognization sys- tem [ C ] . Proceedings of the International Conference on Intelligent Computation Technology and Automa- tion (ICICTA) , 2010, 1 : 285-288. 被引量:1
  • 9杨闯,陈家新,黎蔚.基于中值夹角链码的掌静脉特征提取[J].计算机应用,2009,29(11):3048-3050. 被引量:3
  • 10LEE J C. A novel biometric system based on palm vein image [ J ]. Pattern Recognization Letters, 2012, 33(12) : 1520-1528. 被引量:1

二级参考文献153

共引文献51

同被引文献67

  • 1PILLAI J K, PUERTAS M, CHELLAPPA R. Cross-sensor iris recognition through kernel learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 73-85. 被引量:1
  • 2KONG A, ZHANG D, KAMEL M. A survey of palmprint recognition[J]. Pattem Recognition, 2009, 42(7): 1408-1418. 被引量:1
  • 3GUO Z H, LUG M. Palmprint recognition using Gabormagnitude code[C]. Proceedings of the International Conference on Machine Learning and Cybernetics, Qingdao, China, 2010, 2: 796-801. 被引量:1
  • 4MERAOUMIA A, CHITROUB S, BOURIDANE A. Gaussian modeling and discrete cosine transform for efficient and automatic palmprint identification[C]. Proceedings of the International Conference on Machine and Web Intelligence (ICMWI), 2010: 121-125. 被引量:1
  • 5HAN C C, CHENG H L, LINT C L, et al. Personal authentication using palm-print features[J]. Pattern Recognition, 2003, 36(2): 371-381. 被引量:1
  • 6PRASAD S M, GOVINDAN V K, SATHIDEVI P S. An efficient wavelet-based palmprint verification approach[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2010, 8(6): 961-985. 被引量:1
  • 7MICHAEL G K O, CONNIE T, JIN A T B. Design and implementation of a contactless palm print and palm vein sensor[C]. Proceedings of the 1 lth International Conference on Control, Automation, Robotics and Vision, Singapore, 2010: 1268-1273. 被引量:1
  • 8WU X Q, ZHAO Q S, BU W. A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors[J]. Pattern Recognition, 2014. 47(10): 3314-3326. 被引量:1
  • 9JABID T, KABIR M H, CHAE O. Local directional pattern (LDP) for face recognition[C]. Proceedings of the Digest of Technical Papers International Conference on Consumer Electronics (ICCE), 2010: 329-330. 被引量:1
  • 10CHOGE H K, OYAMA T, KARUNGARU S, et al. Palmprint recognition based on local DCT feature extraction[C]. Proceedings of the 16th International Conference on Neural Information Processing, Bangkok, Thailand, 2009: 639-648. 被引量:1

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部