期刊文献+

基于改进的像素级和对象级的遥感影像合成分类 被引量:10

Synthesis Classification of Remote Sensing Image Based on Improved Pixel-level and Object-level Methods
下载PDF
导出
摘要 像素级和对象级的分类研究分别作为两个独立的方向开展,二者的结合与优势互补还没有引起关注。对像素级和对象级分类方法的结合进行探索,提出基于改进的像素级和对象级的遥感影像合成分类方法。首先,以一种改进的RBF神经网络分类器进行像素级分类、以一种基于改进模糊支持向量机和决策树的层次分类模型进行对象级分类,获得多层次分类结果。然后,提出具体的像素级分类与对象级分类的合成算法,对多层次分类结果进行合成。试验表明,合成分类方法能有效地提高分类结果的精度,提供比单一像素级方法或对象级方法更准确的分类结果。 The pixel- and object-level classification methods are investigated separately, while the hybrid of them has not been explored. This paper tries exploration on the hybrid of pixel- and object-level classification, and proposes synthesis classification method for remote sensing image based on improved pixel- and object-level classification. Firstly, an improved RBF neural network classifier is proposed to obtain the pixel-level classification result, and a hierarchy classification model based on improved fuzzy support vector machines and decision tree is utilized to obtain the object-level classification result. Then a specific synthesis algorithm ofpixel- and object-level classification is proposed to obtain the synthesis classification result. The experiments show the synthesis classifi- cation method can improve the accuracy of classification result effectively and provide more accurate classification result than single pixel- or object-level method.
作者 李刚 万幼川
出处 《测绘学报》 EI CSCD 北大核心 2012年第6期891-897,903,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家科技支撑计划(2011BAH12B03)
关键词 像素级分类 对象级分类 合成分类 层次分类 pixel-level classification object-level classification synthesis classification hierarchy classification
  • 相关文献

参考文献15

  • 1宫鹏.遥感科学与技术中的一些前沿问题[J].遥感学报,2009,13(1):13-23. 被引量:88
  • 2RICHARDS J A, XIU Pingjia. Using Suitable Neighbors to Augment the Training Set in Hyperspectral Maximum Likelihood Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2008,5 (4): 774-777. 被引量:1
  • 3PARRINELLO T, VAUGHAN R A. On Comparing Multifractal and Classical Features in Minimum Distance Classification of AVHRR Imagery [J]. International Journal of Remote Sensing, 2006, 27(18) :3943 -3959. 被引量:1
  • 4VENKATALAKSHMI K, SHALINIE S M. Multispectral Image Classification Using Modified K-Means Algorithm [J]. Neural Network World, 2007, 17(2) :113 120. 被引量:1
  • 5MELESSE A M, JORDAN J D. A Comparison of Fuzzy vs. Augmented-ISODATA Classification Algorithms for Cloud shadow Discrimination from Landsat Images [J]. Photogrammetric Engineering and Remote Sensing, 2002, 68(9) :905-911. 被引量:1
  • 6RATLE F, CAMPS-VALLS G, WESTON J. Semisuper vised Neural Networks for Efficient Hyperspectral Image Classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2271-2282. 被引量:1
  • 7MAULIK U, SAHA I. Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification [J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2010, 48(9):3503-3510. 被引量:1
  • 8杨国鹏,余旭初,周欣,张鹏强.基于相关向量机的高光谱影像分类研究[J].测绘学报,2010,39(6):572-578. 被引量:13
  • 9CORCORAN P, WINSTANLEY A, MOONEY P. Segmentation Performance Evaluation for Object based Remotely Sensed Image Analysis[J]. International Journal of Remote Sensing, 2010, 31(3): 617 -645. 被引量:1
  • 10CHEN Y, SHI P, FUNG T, et al. Object oriented Clas sification for Urban Land Cover Mapping with ASTER Imagery[J]. International Journal of Remote Sensing, 2007, 28(20): 4645- 4651. 被引量:1

二级参考文献29

共引文献105

同被引文献69

引证文献10

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部