期刊文献+

基于相关向量机的高光谱影像分类研究 被引量:13

Research on Relevance Vector Machine for Hyperspectral Imagery Classification
下载PDF
导出
摘要 从分析支持向量机用于高光谱影像分类时存在的不足出发,提出一种基于相关向量机的高光谱影像分类方法。在介绍稀疏贝叶斯分类模型的基础上,将相关向量机学习转化为最大化边缘似然函数参数估计问题,并采用快速序列稀疏贝叶斯学习算法。通过PHI和OMIS影像分类试验分析表明基于相关向量机的高光谱影像分类方法的优势。 Though the support vector machine has been successfully applied in hyperspectral imagery classification,it has also several limitations.Relevance vector machine(RVM) is a sparse model in the Bayesian framework,its mathematics model doesn't have regularization coefficient and its kernel functions don't need to satisfy Mercer's condition.RVM presents the good generalization performance,and its predictions are probabilistic.In this paper,we firstly analysis the disadvantages of the support vector machine for hyperspectral imagery classification,and then a hyperspectral imagery classification method based on the relevance machine is brought forward.We introduce the sparse Bayesian classification model,regard the RVM learning as the maximization of marginal likelihood,and select the fast sequential sparse Bayesian learning algorithm.Through the experiments of PHI and OMIS imageries,the advantages of the relevance machine used in hyperspectral imagery classification are given out.
出处 《测绘学报》 EI CSCD 北大核心 2010年第6期572-578,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家863计划(2006AA701309)
关键词 高光谱影像 稀疏贝叶斯模型 相关向量机 支持向量机 hyperspectral imagery sparse Bayesian model relevance vector machine support vector machine
  • 相关文献

参考文献15

  • 1杨田鹏.基于核方法的高光潜影像分类与特征提取[D].郑州:信息工程大学.2007. 被引量:1
  • 2夏建涛..基于机器学习的高维多光谱数据分类[D].西北工业大学,2002:
  • 3VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York.. Springer, 1995. 被引量:1
  • 4SHAWE TSYI.OR J, CRISTIANINI N. Kernel Methods for Pattern Analysis[M]. London: Cambridge University Press, 2004:47 -82. 被引量:1
  • 5BISHOP C M, TIPPING M E. Variational Relevance Vector Machines[C] // Proceedings of the 16th Conference on Uncer tainty in Artificial Intelligence. San Francisco: Morgan Kaufmann, 2000:46-53. 被引量:1
  • 6TIPPING M E, FAUL A. Fast Marginal Likelihood Maximiza tion for Sparse Bayesian Models[C]//Proceedings of Ninth In ternational Workshop on Artificial Intelligence and Statistics. Key West: [s. n. ], 2003. 被引量:1
  • 7THAYANANTHAN A. Template based Pose Estimation and Tracking of 3D Hand Motion[D]. Cambridge: University of Cambridge, 2005. 被引量:1
  • 8SILVA C, RIBEIRO B. Scaling Text Classification with Rele vance Vector Machines[C]//IEEE International Conference on Systems, Man and Cybernetics. Taipei : IEEE, 2006 : 4186- 4191. 被引量:1
  • 9DEMIR B, ERTURK S. Hyperspectral Image Classification Using Relevance Vector Machines[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 586- 590. 被引量:1
  • 10NIKOLAEV N, TINO P. Sequential Relevance Vector Machine Learning from Time Series[C]//Proceedings of 2005 IEEE International Joint Conference on Neural Networks. [S. l. ]: IEEE, 2005:1308 -1313. 被引量:1

同被引文献183

引证文献13

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部