期刊文献+

基于遥感图像的目标识别新方法

A new target recognition method in remote sensing image
原文传递
导出
摘要 遥感图像中须要识别的目标往往与已知训练的目标数据在外观、成像质量等特性方面不一样,从而导致目标正确识别效果差的问题.针对这一问题,提出一种基于迁移学习的方法用于遥感目标识别.该方法首先提取目标的Hu矩参数作为其特征向量,然后采用迁移学习方法来寻找特征空间中目标数据与不同分布的训练数据之间共同的知识实现迁移.试验结果表明:提出的方法能够有效地用于对遥感目标的识别,对比其他传统的方法,识别效果有明显的提高. As some attributes of the test data,such as shape,imaging quality,are different from those of the training data in the remote sensing(RS)images,the different distributions of data cause the low reliability of the target recognition.Aimed at the problem,a new target recognition method based on transfer learning for remote sensing image was proposed.Hu moments were firstly extracted as the feature vectors of the targets,and then the transfer learning was used to find the common knowledge transferred in the feature spaces between the target data and the training data.The experimental results show that the proposed method can obtain approving effect in the RS target recognition,and it has greatly improved the performance compared with the other classical methods.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S1期140-143,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61102155) 湖北省教育厅中青年自然科学研究基金资助项目(Q20111205) 第一届高分辨率对地观测学术交流基金资助项目(GFZX04060103)
关键词 目标识别 图像处理 机器学习 遥感图像 识别算法 target recognition image processing machine learning remote sensing image recognition algorithm
  • 相关文献

参考文献4

二级参考文献26

  • 1GONG Peng 1,XU Bing 2 & LIANG Song 1、3 1. State Key Laboratory of Remote Sensing Science,Jointly Sponsored by the Institute of Remote Sensing Applications,Chi-nese Academy of Sciences and Beijing Normal University,Box 9718,Beijing 100101,China,2. Department of Geography,University of Utah,Salt Lake City,UT 84112,USA,3. School of Public Health,University of California,Berkeley,CA 94720,USA.Remote sensing and geographic information systems in the spatial temporal dynamics modeling of infectious diseases[J].Science China(Life Sciences),2006,49(6):573-582. 被引量:5
  • 2Wu P C, Dietterich T G. Improving SVM Accuracy by Training on Auxiliary Data Sources. In: Brodley C E, eds. Proceeding of 21th International Conference on Machine Learning, 2004 Jul 4-8, Banff, Alberta, Canada. ACM, 2004. 871-878 被引量:1
  • 3Mahmud M M H, Ray S, et al. Transfer learning using kolmogorov complexity: Basic theory and empirical evaluations. Technical Report, UIUC-DCS-R-200%2875, Department of Computer Science, University of Illinois at Urbana-Champaign. 2007 被引量:1
  • 4Ben-David S, Blitzer J, Crammer K, et al, Analysis of representations for domain adaptation. In: Koller D, Singer Y, Platt J, et al, eds. Proceeding of Advances in Neural Information Processing Systems 20, MIT Press, Cambridge, MA, 2007, (20): 137- 144 被引量:1
  • 5Dai W Y, Xue G R, Yang Q, et al. Transferring naive bayes classifiers for text classification. In: John C, Peyman F, Simon P, et al, eds. Proceeding of 22nd Conference on Artificial Intelligence, 2007 Jul 22-26, Vancouver, British Columbia. AAAI Press, 2007. 540-545 被引量:1
  • 6Samarth S, Sylvian R. Cross domain knowledge transfer using structured representations. In: Proceeding of 21nd Conference on Artificial Intelligence, 2006 Jul 16 22, Boston, Massachusetts. AAAI Press, 2006 被引量:1
  • 7Ling X, Dai W Y, Xue G R, et al. Spectral domain-transfer learning. In: Li Y, Liu B, Sunita S, et al, eds. Proceeding of 14th ACM International Conference on Knowledge Discovery and Data Mining, 2008, Aug 24 27, Las Vegas, Nevada. ACM, 2008. 488-496 被引量:1
  • 8Mahmud M M H. On Universal Transfer Learning. In: Rocco M H, Servedio R A, Takimoto E, ct al, eds. Proceeding of 18th International Conference on Algorithmic Learning Theory, 2007, Oct 1-4, Sendal, Japan. LNCS, 2007. 135-149 被引量:1
  • 9Belkin M, Niyogi P, Sindhwani V, et al. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Mach I.earn Res, 2006, 7:2399-2434 被引量:1
  • 10Grandvalet Y, Bengio Y. Semi-supervised learning by entropy minimization. In: Proceeding of 19th Conference on Neural Information Processing Systems, 2005 Dec 5-8, Vancouver, British Columbia. MIT Press, 2005. 529-536 被引量:1

共引文献284

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部