期刊文献+

在线评论的情感极性分类研究综述 被引量:17

A Survey on Sentiment Polarity Classification of Online Reviews
原文传递
导出
摘要 对在线评论情感极性分类的研究现状与进展进行了总结。首先对情感类型的划分进行归纳,并针对在线评论中所涉及到的肯定和否定两种情感,从粗粒度、细粒度和实证研究三方面展开评述。为研究情感极性分类的商业价值,对在线评论将如何影响消费者的购买行为以及如何影响商家的销售绩效的工作进行整理和评述。最后对今后的研究方向进行展望。 This paper is a survey about the status quo and progress of sentiment polarity classification of online reviews. First of all, we summed up the division of sentiment types, and commented the positive and negative sentiments involved in online reviews from three aspects.To research the business value of sentiment polarity classification, we collated and commented how the online reviews effected on consumer buying behavior and sales performance of businesses. At last, the direction of future research was discussed.
出处 《情报科学》 CSSCI 北大核心 2012年第8期1263-1271,1276,共10页 Information Science
基金 国家自然科学基金资助项目(70971099) 上海市重点学科建设项目(B310)
关键词 情感极性分类 在线评论 综述 sentiment polarity classification online reviews survey
  • 相关文献

参考文献51

  • 1Philipp Michel. Support vector machines in automated emotion classification[D}. Churchill College,2003. 被引量:1
  • 2崔大志,孙丽伟.在线评论情感词汇模糊本体库构建[J].辽宁工程技术大学学报(社会科学版),2010,12(4):395-398. 被引量:5
  • 3陈建美.中文情感词汇本体的构建及其应用[D].大连:大连理工大学,2009. 被引量:3
  • 4L. Holzman, W. Pottenger. Classification of emotions in internet chat: An appl'ication of machine learning using speech phonemes [D].USA:Lehigh University, 2003. 被引量:1
  • 5KatrinaTriezenberg. The Ontology of Emotion [D]. USA: Purdue University, 2005. 被引量:1
  • 6Jiajun Yan, David B. Bracewell, Fuji Ren, and Shingo Kuroiwa. The Creation of a Chinese Emotion Ontology Based on HowNet [J]. Engineering Letters, 2008, 16 (1):166- 171. 被引量:1
  • 7Turney P. Thumbs up or Thumbs clown? Semantic orien- tation applied to unsupervised classification of review [C]. Proceedings of the 40th Annual Meeting of the As- sociation for Computational Linguistics (ACL), Morris- town, N J, USA: Association for Computational Linguis- tics, 2002. 被引量:1
  • 8Mullen 3?, Collier N. Sentiment analysis using support vector machines with diverse information sources[C]. Proc. of EMNLP-2004,Spain:Barcelona,2004. 被引量:1
  • 9Pang B, lee L and Vailhyanathan S. Sentiment classifi- cation using machine /earning techniques[C]. US:Phil- adelphia,2002. 被引量:1
  • 10Cui H, Mittal V I)atar M. Comparatiw experiments on sentiment classification for online product reviews[Cl.USA:Boston, 2006. 被引量:1

二级参考文献69

共引文献422

同被引文献247

引证文献17

二级引证文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部