期刊文献+

在线评论信息挖掘研究综述 被引量:5

A Review of Research on Online Reviews Information Mining
下载PDF
导出
摘要 在当前网络购物模式下,在线评论成为消费者制定购买决策的重要信息来源。然而,评论信息的快速积累使消费者在信息处理和使用中面临前所未有的挑战,使得文本挖掘技术的研究意义和实践价值越来越突出。基于近年文本挖掘相关文献的梳理和归纳,本文尝试对在线评论信息挖掘的研究方法和应用做系统的、全面的综述,总结出当前对在线评论信息挖掘的研究集中在信息抽取、情感分析和文本分类三个主流研究方法,以及研究结论的商业应用。最后,本文指出了在线评论信息挖掘的未来研究方向。 The online reviews have become the important information source of consumers making purchase decisions in the current online shopping mode. However, the rapid accumulation of reviews is an unprecedented chal- lenge for consumers in the process of information processing and using, which makes the research value and practi- cal value of text mining technology more and more prominent. We try to do systematic and comprehensive review on online review information mining on the basis of related literatures in recent years, summarizing three mainstream research methods of online review information mining: information extraction, sentiment analysis, text categorization and the commercial application of the research conclusions. Finally, we point out the future research direction based on the current online review information mining research.
出处 《信息资源管理学报》 2016年第1期4-11,共8页 Journal of Information Resources Management
基金 国家自然基金项目"金融市场传闻与澄清公告的信息加工机制研究"(71403138) 山东省软科学项目"山东省科技型小微企业的互联网金融模式研究"(2014RKB01324)的资助
关键词 在线评论 文本挖掘 信息抽取 情感分析 文本分类 Online review Text mining Information extraction Sentiment analysis Text categorization
  • 相关文献

参考文献31

  • 1cfc网络口碑咨询研究公司CIO联合罗兰贝格发布2010年中国消费者报告[R/OL]网络口碑白皮书系列,2010-2-3[2014—12—25]http://tWWW.ciccorporatecorn/indexphp?option=corn—content&view=category&layout=bleg&id=17&Itemid=180&lang=zh&limitstart=15. 被引量:1
  • 2李实,叶强,李一军,RobLaw.中文网络客户评论的产品特征挖掘方法研究[J].管理科学学报,2009,12(2):142-152. 被引量:130
  • 3Webster J, Watson RT. analyzing the past to prepare for the future: Writing a literature review[J~. MIS Quarterly, 2002, 26(2):13-21. 被引量:1
  • 4王洪伟,郑丽娟,尹裴,史伟.在线评论的情感极性分类研究综述[J].情报科学,2012,30(8):1263-1271. 被引量:17
  • 5Ming Y, Li YM, Lee CH, Lee CY. Identifying influential reviewers for word-of-mouth marketing[J].Electronic Com- merce Research and Applications, 2010,2(4) :297-298. 被引量:1
  • 6Reyes A, Rosso P. Making objective decisions from subjective data: Detecting irony in customer reviews[J]. Deci- sion Support Systems, 2012,53(27) :754-760. 被引量:1
  • 7Alan SA, Jiao J, Wang GA, et al. Vehicle defect discovery from social mediaC[J]. Decision Support Systems, 2012. 4(5) :92-93. 被引量:1
  • 8Alan SA, Jiao J, Fan WG, et al. What's buzzing in the blizzard of buzz? Automotive component isolation in social media postings[ J]. Decision Support Systems, 2013,12 (23 ) : 873 -876. 被引量:1
  • 9You W J, Xia M, Liu L, et al. Customer knowledge discovery from online reviews[J]. Electron Markets, 2012,7(7) : 3-8. 被引量:1
  • 10Cao Q, Gan QW. Exploring determinants of voting for the helpfulness of online user reviews: A text mining approach [J]. Decision Support Systems, 2011,11(9):516-517. 被引量:1

二级参考文献70

  • 1YE Qiang LI Yijun ZHANG Yiwen.Semantic-Oriented Sentiment Classification for Chinese Product Reviews: An Experimental Study of Book and Cell Phone Reviews[J].Tsinghua Science and Technology,2005,10(z1):797-802. 被引量:7
  • 2王永贵,韩顺平,邢金刚,于斌.基于顾客权益的价值导向型顾客关系管理——理论框架与实证分析[J].管理科学学报,2005,8(6):27-36. 被引量:32
  • 3Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1. 被引量:1
  • 4Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79 86. 被引量:1
  • 5Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre classification and domain transfer for information filtering[A]. In: Fabio Crestani, Mark Girolami, and Cornelis J. van Rijsbergen, editors, Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research, Glasgow, UK. Springer Verlag, Heidelberg, DE. 被引量:1
  • 6Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa Wilson. A corpus study of evaluative and speculative language[A]. In: Proceedings of the 2nd ACL SIGdial Workshop on Discourse and Dialogue, 2001. 被引量:1
  • 7Alina Andreevskaia and Sabine Bergler. Mining Word-Net For a Fuzzy Sentiment: Sentiment Tag Extraction From WordNet Glosses[A].In: Proc. EACL-06, Trento, Italy, 2006. 被引量:1
  • 8Alistair Kennedy and Diana Inkpen. Sentiment Classification of Movie Reviews Using Contextual Valence Shifters[J]. Computational Intelligence, 2006,22 (2) 110-125. 被引量:1
  • 9P.D. Turney and M.L. Littman. Unsupervised learning of semantic orientation from a hundred-billion-word corpus[D]. Technical Report ERB-1094, National Research Council Canada, Institute for Information Technology, 2002. 被引量:1
  • 10P. Subasic and A. Huettner. Affect analysis of text using fuzzy semantic typing[A]. IEEE-FS, 9:483 496, Aug. 2001. 被引量:1

共引文献272

同被引文献62

引证文献5

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部