期刊文献+

语义分析和结构化语言模型 被引量:7

Semantic Analysis and Structured Language Models
下载PDF
导出
摘要 提出了一个语义分析集成系统,并在此基础上构建了结构化的语言模型.该语义分析集成系统能够自动分析句子中各个词的词义以及词之间的语义依存关系,达到90.85%的词义标注正确率和75.84%的语义依存结构标注正确率.为了描述语言的结构信息和长距离依存关系,研究并分析了两种基于语义结构的语言模型.最后,在中文语音识别任务上测试两类语言模型的性能.与三元语言模型相比,性能最好的语义结构语言模型——中心词三元模型,使绝对字错误率下降0.8%,相对错误率下降8%. An integrated semantic analysis system is presented, and the structured language models are proposed based on it. The semantic analysis system can automatically tag semantic class for each word and analyze the semantic dependency structure between words with the precision of 90.85% and 75.84% respectively. In order to describe sentence structure and long-distance dependency, two kinds of structured language models are examined and analyzed. Finally, these two language models are evaluated on the task of Chinese speech recognition. Experiments show that the best semantic structured language model-headword trigram model-achieves 0.8% absolute error reduction and 8% relative error reduction over the trigram model.
出处 《软件学报》 EI CSCD 北大核心 2005年第9期1523-1533,共11页 Journal of Software
基金 国家高技术研究发展计划(863)~~
关键词 语义分析 依存分析 语言模型 语音识别 semantic analysis dependency analysis language model speech recognition
  • 相关文献

参考文献14

  • 1梅家驹著..同义词词林[M].上海:上海辞书出版社,1983:762.
  • 2Jelinek F. Self-Organized language modeling for speech recognition. In: Waibel A, Lee KF, eds. Readings in Speech Recognition.San Mateo: Morgan Kaufmann Publishers, 1990. 450-506. 被引量:1
  • 3Brown PF, DellaPietra V J, DeSouza PV, Lai JC, Mercer RL. Class-Based n-gram models of natural language. Computational Linguistics, 1992,18(4).467-479. 被引量:1
  • 4Lau R, Rosenfeld R, Roukos S. Trigger-Based language models: A maximum entropy approach. In: Sullivan BJ, ed. Proc. of the Int'l Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Vol Ⅱ. 1993.45-48. 被引量:1
  • 5Bellegarda JR. A multi-span language modeling framework for large vocabulary speech recognition. IEEE Trans. on Speech Audio Processing, 1998,6(5):456-467. 被引量:1
  • 6Gao JF, Suzuki H, Wen Y. Exploring headword dependency and predictive clustering for language modeling. In: Hajic J,Matsumoto Y, eds. Proc. of the Empirical Methods in Natural Language Processing (EMNLP). 2002. 248-256. 被引量:1
  • 7Chelba C. Exploiting syntactic structure for natural language modeling [Ph.D. Thesis]. Johns Hopkins University, 2000. 被引量:1
  • 8Xu P, Chelba C, Jelinek F. A study on rich syntactic dependencies for structured language modeling. In: Proc. of the 40th Annual Meeting of the Association for Computational Linuistics (ACL). ACL, 2002. 191-199. 被引量:1
  • 9Roark B. Probabilistic top-down parsing and language modeling. Computational Linguistics, 2001,27(2):249-276. 被引量:1
  • 10Gao JF, Suzuki H. Unsupervised learning of dependency structure for language modeling. In: Proc. of the 41st Annual Meeting of the Association for Computational Linguistics (ACL). ACL, 2003. 7-12. http://research.microsoft.com/~jfgao/paper/dlm-ACL03.pdf. 被引量:1

二级参考文献3

  • 1董振东,董强.知网和汉语研究[J].当代语言学,2001,3(1):33-44. 被引量:57
  • 2齐士钤 张家禄.汉语普通话辅音音长分析[J].声学学报,1982,(1):8-13. 被引量:17
  • 3王作英.基于段长分布的HMM语音识别模型 [A]..第二届全国汉字汉语识别会议 [C].庐山,1989.9. 被引量:1

共引文献49

同被引文献57

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部