期刊文献+

自适应冗余多小波及其在故障诊断中的应用 被引量:10

Adaptive Redundant Multiwavelet with Applications to Fault Diagnosis
下载PDF
导出
摘要 针对机械设备在运行过程中萌生的故障尚在特征不明显、特征信息微弱且往往被机械设备运行过程中的强噪声所淹没等给故障特征提取与故障定位带来了很大困难,提出了自适应冗余多小波的故障诊断方法.基于Chui-Lian多小波,依据信号特点采用两尺度相似变换方法,以谱熵最小为优化目标、遗传算法为优化方法,实现了冗余多小波的自适应构造.同时,对振动信号进行了冗余多小波分解,从而实现了对故障的准确定位及特征提取.将提出的方法应用于滚动轴承的故障分析和烟汽轮机的碰摩故障诊断中,结果显示,该方法可以有效地提高对机械设备在运行中产生故障的诊断能力.对比结果表明,该方法明显地优于传统的傅里叶变换、Db6单小波变换和原始CL3多小波变换等方法. Signals of mechanical equipment faults in operation with obscure symptoms and weak features are always contaminated by stronger background noise. To solve the difficulty, a new method called adaptive redundant multiwavelet is proposed. Following Chui-Lian multiwavelet and two-scale similarity transforms, and taking the minimum envelope spectrum entropy as the optimization objective and genetic algorithms as the optimization tool, the redundant multiwavelet is adaptively constructed. Compared with the Fourier transform, Db6 scalar wavelet transform and CL3 multiwavelet transform, the applications to fault diagnosis rub-impact for a rolling element bearing of outer-race and a flue gas turbine unit of show the improved effectiveness of the proposed method.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第7期44-49,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50975220)
关键词 冗余多小波 自适应构造 两尺度相似变换 故障诊断 redundant multiwavelet adaptive constructiom two-scale similarity transforms fault diagnosis
  • 相关文献

参考文献8

  • 1何正嘉,訾艳阳,陈雪峰,王晓冬.内积变换原理与机械故障诊断[J].振动工程学报,2007,20(5):528-533. 被引量:27
  • 2WANG Xiaodong, ZI Yanyang, HE Zhengjia. Multiwavelet construction via an adaptive symmetric lifting scheme and its applications for rotating machinery fault diagnosis [J]. Measurement Science and Technology, 2009, 20(4) :1-17. 被引量:1
  • 3BRADLEY A P. Shift-invariance in the discrete wavelet transform [C]//Proeeedings of the 7th International Conference on Digital Image Computing: Techniques and Applications. Sydney, Australia: The University of Queensland, 2003: 29-38. 被引量:1
  • 4STRELA V. Multi-wavelets: theory and application [D]. Cambridge, USA: Massachusetts Institute of Technology, 1996. 被引量:1
  • 5CHUI C K, LIAN J. A study of orthonormal multiwavelets U3. Applied Numerical Mathematics, 1996, 20(3) :273-298. 被引量:1
  • 6黄卓君,马争鸣.CL多小波图象编码[J].中国图象图形学报(A辑),2001,6(7):662-668. 被引量:19
  • 7MALLAT S G. A wavelet tour of signal processing [M]. 2nd ed. Beijing: Machinery Industry Press, 2003: 49-51. 被引量:1
  • 8李宏坤,张志新,马孝江,王珍.基于Hilbert谱熵的柴油机故障诊断方法研究[J].大连理工大学学报,2008,48(2):220-224. 被引量:12

二级参考文献26

  • 1马孝江 余伯 张志新.一种新的时频分析方法—局域波法[J].振动工程学报,2000,13(5):219-224. 被引量:60
  • 2杨力华,戴道清,黄文良等译.信号处理的小波导引[M].(Mallat S.A wavelet tour of signal processing.Second Edition,1999).北京:机械工业出版社,2002. 被引量:1
  • 3Zhang L, Gao R X, Lee K B. Spindle health diagnosis based on analytic wavelet enveloping [J]. IEEE Transactions on Instrumentation and Measurement,2006, 55(5): 1 850-1 858. 被引量:1
  • 4Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4-5): 981--999. 被引量:1
  • 5Peng Z K, Chu F L, Tse P W. Singularity analysis of the vibration signals by means of wavelet modulus maximal method[J]. Mechanical Systems and Signal Processing, 2007, 21(2):780--794. 被引量:1
  • 6Sweldens W. The lifting scheme: A construction of second generation wavelet constructions[J]. SIAM J. Math. Anal. 1997, 29(2):511--546. 被引量:1
  • 7Geronimo J S, Hardin D P, Massopust P R. Fractal function and wavelet expansions based on several scaling functions[J]. Journal of Approximation Theory, 1994,78:373--401. 被引量:1
  • 8Strela V, Walden A T. Orthogonal and biorthogonal multiwavelets for signal denoising and image compression[J]. Proc SPIE, 1998, 3 391: 96--107. 被引量:1
  • 9Vasily Strela, Peter Niels Heller, Gilbert Strang, et al. The application of multiwavelet filterbanks to image processing[J]. IEEE Transactions on Image Processing, 1999, 8: 548--563. 被引量:1
  • 10Khadem S E, Rezaee M. Development of vibration signature analysis using multiwavelet systems [J]. Journal of Sound and Vibration, 2003, 261: 613-- 633. 被引量:1

共引文献55

同被引文献86

引证文献10

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部