期刊文献+

滚动轴承故障诊断的多小波谱峭度方法 被引量:44

Spectral Kurtosis of Multiwavelet for Fault Diagnosis of Rolling Bearing
下载PDF
导出
摘要 采用提升多小波的方法,以峭度为优化目标,遗传算法为优化算法,针对信号特征进行多小波的自适应构造.以构造的多小波作为谱峭度的滤波器,针对多小波特点改进了峭度图,提出了多小波谱峭度方法.该方法建立在传统谱峭度方法的基础上,不仅克服了原方法中滤波器变化有限的劣势,而且提高了谱分析的分辨率.将该方法应用于滚动轴承的故障诊断中,以试验台与电力机车的滚动轴承故障诊断为例进行验证,结果表明,该方法不仅提高了频带选择的准确性与滤出信号的信噪比,而且获得了更好的诊断效果. A new multiwavelet is constructed according to the signal feature,which utilizes mulitiwavelet lifting,taking kurtosis as the optimal object and genetic algorithm as the optimal strategy.The new multiwavelet is substituted for the filter in spectral kurtosis(SK) and the kurtogram is improved accordingly.The multiwavelet spectral kurtosis is proposed based on the conventional SK,which makes up the SK in filter limitation and improves the resolution of spectral analysis.The examples for rolling bearing in test rig and locomotive result indicate the improved accuracy of frequency-band-selection and the signal-to-noise-ratio of signal filtered.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第3期77-81,共5页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2006AA04Z430) 教育部高等学校博士学科点专向科研基金资助项目(200806980011)
关键词 多小波 自适应构造 谱峭度 滚动轴承 故障诊断 multiwavelet adaptive construction spectral kurtosis rolling bearing fault diagnosis
  • 相关文献

参考文献9

  • 1ANTONI J. The spectral kurtosis, a useful tool for characterizing non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006(20): 282-307. 被引量:1
  • 2ANTONI J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical Systems and Signal Processing, 2007(21) : 108-124. 被引量:1
  • 3何正嘉,訾艳阳,陈雪峰,王晓冬.内积变换原理与机械故障诊断[J].振动工程学报,2007,20(5):528-533. 被引量:27
  • 4MARIANTONIA C, LAURA B M, LUIGIA P. Multiwavelet analysis and signal processing[J]. IEEE Transactions on Circuits and Systems:Ⅱ Analog and Digital Signal Processing, 1998, 45(8): 970-987. 被引量:1
  • 5WANG Xiaodong, Zl Yanyang, HE Zhengjia. Multiwavelet construction via an adaptive symmetric lifting scheme and its applications for rotating machinery fault diagnosis [J]. Measurement Science and Technology, 2009, 20(4): 1-17. 被引量:1
  • 6屈梁生,何正嘉编著..机械故障诊断学[M].上海:上海科学技术出版社,1986:186.
  • 7GERONIMO J S, HARDIN D P, MASSOPUST P R. Construction of orthogonal wavelets using fractal interpolation functions [J]. SIAM Journal on Mathematical Analysis, 1996, 27: 158-192. 被引量:1
  • 8姜洪开,何正嘉,段晨东,陈雪峰.自适应冗余第2代小波设计及齿轮箱故障特征提取[J].西安交通大学学报,2005,39(7):715-718. 被引量:9
  • 9SWELDENS W. The lifting scheme: a custom-design construction of biorthogonal wavelets [J]. Applied and Computational Harmonic Analysis, 1996, 3 (2) : 186-200. 被引量:1

二级参考文献15

  • 1Sweldens W. The lifting scheme: a construction of second generation wavelets[J]. SIAM J Math Anal,1996,29(2):511-546. 被引量:1
  • 2Claypoole R L, Baraniuk R G, Nowak R D. Adaptive wavelet transforms via lifting[DB/OL].URL:∥www.dsp.rice.edu/publications/clayp_SPTTrans99.ps.gz, 2002-09-23. 被引量:1
  • 3Nason G P, Silverman B W. The stationary wavelet transform and some statistical applications in wavelet and statistics, lecture notes in statistics[M]. London: Springer Verlag, 1995.281-299. 被引量:1
  • 4Uytterhoeven G. Wavelets: software and applications[D]. Leuven, Belgium: the Faculty of Engineering of the Katholieke Universiteit Leuven, 1999. 被引量:1
  • 5杨力华,戴道清,黄文良等译.信号处理的小波导引[M].(Mallat S.A wavelet tour of signal processing.Second Edition,1999).北京:机械工业出版社,2002. 被引量:1
  • 6Zhang L, Gao R X, Lee K B. Spindle health diagnosis based on analytic wavelet enveloping [J]. IEEE Transactions on Instrumentation and Measurement,2006, 55(5): 1 850-1 858. 被引量:1
  • 7Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4-5): 981--999. 被引量:1
  • 8Peng Z K, Chu F L, Tse P W. Singularity analysis of the vibration signals by means of wavelet modulus maximal method[J]. Mechanical Systems and Signal Processing, 2007, 21(2):780--794. 被引量:1
  • 9Sweldens W. The lifting scheme: A construction of second generation wavelet constructions[J]. SIAM J. Math. Anal. 1997, 29(2):511--546. 被引量:1
  • 10Geronimo J S, Hardin D P, Massopust P R. Fractal function and wavelet expansions based on several scaling functions[J]. Journal of Approximation Theory, 1994,78:373--401. 被引量:1

共引文献34

同被引文献439

引证文献44

二级引证文献598

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部