期刊文献+

内积变换原理与机械故障诊断 被引量:27

Transform principle of inner product for fault diagnosis
下载PDF
导出
摘要 机械故障诊断广泛使用的方法是对动态信号进行傅里叶变换、短时傅里叶变换、小波变换以及第二代小波变换。指出这些变换的本质是采用不同的基函数与信号进行内积变换,从动态信号中提取和基函数最相似的故障特征。运用三角基函数、Gabor基函数、离散基函数、谐波基函数、Laplace基函数、Hermitian基函数、第二代小波基函数等,有效地提取出发电机组松动、齿轮箱冲击摩擦、高压缸蒸汽激振、机车轮对滚动轴承损伤等故障特征。采用合理的基函数或多重基函数(多小波)对动态信号进行内积变换,可有效地提取故障特征,进行正确的故障诊断。 Fourier transform, short time Fourier transform, wavelet transform and second generation wavelet transform are widely used for mechanical fault diagnosis. In this paper, it is revealed that the essence of these transforms is inner product transform for signals with various basis functions, from which fault feature being the most similar to basis function can be extracted from dynamic signals. A lot of basis functions such as trigonometric basis, Gabor basis, discrete basis, harmonic basis, Laplace basis, Hermitian basis, second generation wavelet basis, etc. have been adopted for fault feature extraction. Looseness fault feature of a turbo-generator, impulse friction symptom of gearbox, failure feature of high-pressure turbine excited by steam, and bearing defect of electric locomotive were extracted successfully. Provided that adopt reasonable basis functions or multi-bases (multiwavelet) for inner product transform of dynamic signals, effective fault features and correct fault diagnosis can be obtained.
出处 《振动工程学报》 EI CSCD 北大核心 2007年第5期528-533,共6页 Journal of Vibration Engineering
基金 国家自然科学基金重点资助项目(50335030) 国家重点基础研究发展计划(973)(2005CB724106)
关键词 故障诊断 内积变换 基函数 fault diagnosis inner product transform basis function
  • 相关文献

参考文献12

  • 1杨力华,戴道清,黄文良等译.信号处理的小波导引[M].(Mallat S.A wavelet tour of signal processing.Second Edition,1999).北京:机械工业出版社,2002. 被引量:1
  • 2何正嘉等著..机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2002:160.
  • 3Zhang L, Gao R X, Lee K B. Spindle health diagnosis based on analytic wavelet enveloping [J]. IEEE Transactions on Instrumentation and Measurement,2006, 55(5): 1 850-1 858. 被引量:1
  • 4Sanz J, Perera R, Huerta C. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4-5): 981--999. 被引量:1
  • 5Peng Z K, Chu F L, Tse P W. Singularity analysis of the vibration signals by means of wavelet modulus maximal method[J]. Mechanical Systems and Signal Processing, 2007, 21(2):780--794. 被引量:1
  • 6杨福生著..小波变换的工程分析与应用[M].北京:科学出版社,1999:271.
  • 7Sweldens W. The lifting scheme: A construction of second generation wavelet constructions[J]. SIAM J. Math. Anal. 1997, 29(2):511--546. 被引量:1
  • 8Geronimo J S, Hardin D P, Massopust P R. Fractal function and wavelet expansions based on several scaling functions[J]. Journal of Approximation Theory, 1994,78:373--401. 被引量:1
  • 9Strela V, Walden A T. Orthogonal and biorthogonal multiwavelets for signal denoising and image compression[J]. Proc SPIE, 1998, 3 391: 96--107. 被引量:1
  • 10Vasily Strela, Peter Niels Heller, Gilbert Strang, et al. The application of multiwavelet filterbanks to image processing[J]. IEEE Transactions on Image Processing, 1999, 8: 548--563. 被引量:1

同被引文献327

引证文献27

二级引证文献651

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部