期刊文献+

小波包分析技术在大型电机转子故障诊断系统中的应用 被引量:63

APPLICATION OF WAVELET PACKET IN FAULT DIAGNOSIS SYSTEM OF LARGE SCALE DC MOTOR ROTOR
下载PDF
导出
摘要 通过精密离心机电机驱动系统和机械系统的故障机理的分析,提出了两种故障信号基于小波包分析的特征提取方法。一个是渐进性故障信号的特征提取方法,控制器误差信号通过小波包分解与重构,最后在最低频段的节点得到了已经去噪的故障信号。另一个是振动信号频带能量的特征向量提取方法,动平衡系统的振动信号被分解到独立的频段,不同频带内的信号能量变化反映了系统机械运行状态的改变,每个能量成分被提取形成特征向量用于故障诊断。试验与仿真结果表明这种基于小波包分析的故障方法具有算法简单、可行的优点。 Though the analysis of motor drive system and mechanical system failure mechanism, two type fault signal's character extraction method based on the algorithm of wavelet packets is presented. One is progressive fault signal, after the wavelet packet decomposition and reconfiguration, controller's error signal which has been well denoised can be obtained on the node of minimum frequency band. Another is eigenvector extraction method of vibration signals frequency band energy. The vibration signal of dynamic balance system is decomposed into the individual frequency bands, the variations of the signal energy in these bands reflect the different mechanical conditions, each energy ingredient is extracted to form the eigenvector for fault diagnosis. Test and simulation results demonstrate that the method of fault diagnosis using wavelet packet analysis is simple and feasible.
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第22期158-162,共5页 Proceedings of the CSEE
关键词 精密离心机 小波包 故障诊断 误差信号 特征向量 频带 Precision centrifuge Wavelet packet Fault diagnosis Error signal Eigenvector Frequency band
  • 相关文献

参考文献15

二级参考文献43

  • 1三轮修三 下村玄.旋转机械的平衡[M].北京:机械工业出版社,1992.. 被引量:22
  • 2明石和彦 浅羽正三 等.动平衡试验[M].长春:吉林人民出版社,1980.. 被引量:11
  • 3[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998. 被引量:1
  • 4[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243. 被引量:1
  • 5[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476. 被引量:1
  • 6[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485. 被引量:1
  • 7[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235. 被引量:1
  • 8[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044. 被引量:1
  • 9[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220. 被引量:1
  • 10[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232. 被引量:1

共引文献481

同被引文献529

引证文献63

二级引证文献481

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部