期刊文献+

小波包和模糊神经网络在离心泵故障振动信号处理中的应用 被引量:5

Application of the wavelet package and fuzzy neural network in failure vibration signals processing of centrifugal pump
下载PDF
导出
摘要 根据离心泵故障振动信号的特点,提出了利用小波包分解、重构技术进行消噪处理及频带能量特征提取,并以“能量”为元素,构造离心泵振动信号的特征向量,通过对神经网络和模糊系统的结合方式的研究,提出了一种基于小波包和模糊神经网络的离心泵轴系故障诊断方法,实验分析结果表明,该方法可以有效地对离心泵轴系振动信号进行诊断。 According to the characteristics of fault vibration signals of centrifugal pump,a method of killing the noise and extracting frequency band energy feature by means of wavelet package decomposition and reconstruction technique is presented.The conception of 'energy' is proposed based on the theory that signals energy in all frequency can be affected by faults considerably.To construct feature vectors of Centrifugal Pump vibration signals,a centrifugal pump fault diagnosis method base on wavelet package and fuzzy neural network is put forward and applied to the fault diagnosis of centrifugal pump axis.The experimental result indicates that this method can efficiently process the fault vibration signals of the centrifugal pump axis.
机构地区 东北电力大学
出处 《华电技术》 CAS 2006年第9期1-5,共5页 HUADIAN TECHNOLOGY
关键词 小波包 神经网络 模糊神经网络 特征提取 故障诊断 wavelet packet neural network fuzzy neural network feature extraction fault diagnosis
  • 相关文献

参考文献5

二级参考文献15

共引文献55

同被引文献38

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部