期刊文献+

基于PCA与决策树的转子故障诊断 被引量:11

ROTOR FAULT DIAGNOSIS BASED ON PCA AND DECISION TREE
下载PDF
导出
摘要 将数据挖掘方法引入旋转机械故障诊断领域,提出一种基于主元分析(PCA)与决策树相结合的转子故障诊断方法。该方法首先利用PCA进行特征约简,降低特征空间的维数,然后采用C4.5决策树进行训练学习以及诊断决策。通过对转子类常见故障的诊断分析,证明该方法具有比BP神经网络训练时间更短、诊断准确率稍高的特点。 A method of rotor fault diagnosis based on principal component analysis (PCA)and decision tree is proposed. With this method, PCA is used to simplify rotor fault features and decrease the dimension numbr of the feature space. Then the decision tree C4.5 is applied to learn from training samples and diagnose by using the acquired knowledge. Through the diagnosis test of five rotor faults, it is proved that C4.5 decision tree needs less training time and has higher correctness rate than back propagation (BP) neural networks.
出处 《振动与冲击》 EI CSCD 北大核心 2007年第3期72-74,共3页 Journal of Vibration and Shock
基金 国家自然科学基金资助(No50335030)项目
关键词 故障诊断 转子 决策树 主元分析 数据挖掘 fault diagnosis, rotor, decision tree, principal component analysis(PCA), data mining
  • 相关文献

参考文献10

二级参考文献65

  • 1许飞云,贾民平,钟秉,林黄仁.旋转机械振动故障诊断的一种模糊神经网络方法研究[J].振动工程学报,1996,9(3):213-219. 被引量:20
  • 2何永勇,钟秉林,黄仁.基于人工神经网络的旋转机械多故障同时性诊断策略[J].东南大学学报(自然科学版),1996,26(5):39-43. 被引量:5
  • 3王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 4杨叔子.机械设备诊断学的探讨[J].华中工学院学报,1987,15(2):1-8. 被引量:5
  • 5Martin, E. B., A. J. Morris and J. Zhang. Process pedonnatwe monitoring using multivariate statistical process control[J]. IEE Proc. of Control Theory and Application, 1996,143:132 - 144. 被引量:1
  • 6MacGregor, J.F. and T. Kourti. Statistical process control of multivariate process[ J]. Control Engineering Practice, 1995,3:403 - 414. 被引量:1
  • 7Liu Zhiqiang, Francis Y. Fuzzy Neural Network in Case-Based Diagnostic System [J]. IEEE Transactions on fuzzy systems, 1997, 5(2):202-209. 被引量:1
  • 8Mathew J B. Experiments in the Application of Neural Networks to Rotating Machine Fault Diagnosis [A]. IEEE International Joint Conference on Neural Networks [C]. M J Boek, 1991, 1:769-774. 被引量:1
  • 9Kwanghee N, Seongno L. Diagnosis of Rotating Machines by Utilizing a Back-propagating Neural Net [A]. Proceedings of the 1992 International conference on Industrial Electronics, Control, Instrumentation, and Automation[C]. 1992, 1064-1067. 被引量:1
  • 10Byung-geun H, Kwanghee N. Faults Diagnoses of Rotating Machines by Using Neural Net: GRNN and BPN [J]. Proceedings of the 1995 IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation[C]. 1995, 1455-1461. 被引量:1

共引文献42

同被引文献106

引证文献11

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部