期刊文献+

一种有效的蛋白质序列聚类分析方法 被引量:15

Efficient Cluster Analysis Method for Protein Sequences
下载PDF
导出
摘要 提出了一种有效的基于仿射传播聚类算法和后处理方法的蛋白质序列聚类方法.在聚类分析蛋白质序列时,为了优化仿射传播聚类算法的聚类结果,采用后处理的方式来提高聚类结果的质量.为了度量蛋白质序列之间的相似度,给出了一种改进的无比对计算方法.在6个蛋白质序列数据集上进行对比实验,实验结果表明,所给出的方法能够有效地分析蛋白质序列. This paper proposes an efficient clustering method for protein sequences, using Affinity propagation algorithm (AP) and post-processing. In order to optimize the clustering result, post-processing is used to improve the clustering result of AP. To measure the similarity between two protein sequences, an improved alignment-free similarity measure is presented. This method is evaluated and compared with other algorithms on six protein sequences data sets. Experimental results demonstrate the effective performance of the proposed method.
出处 《软件学报》 EI CSCD 北大核心 2011年第8期1827-1837,共11页 Journal of Software
基金 国家自然科学基金(60671033)
关键词 模式识别 聚类分析 序列分析 蛋白质序列 pattern recognition cluster analysis sequence analysis protein sequence
  • 相关文献

参考文献2

二级参考文献47

  • 1[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu. 被引量:1
  • 2[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801. 被引量:1
  • 3[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181. 被引量:1
  • 4[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297. 被引量:1
  • 5[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114. 被引量:1
  • 6[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84. 被引量:1
  • 7[7]Beyer, K.S., Goldstein, J., Ramakrishnan, R., et al. When is 'nearest neighbor' meaningful? In: Beeri, C., Buneman, P., eds. Proceedings of the 7th International Conference on Data Theory, ICDT'99. LNCS1540, Jerusalem, Israel: Springer, 1999. 217~235. 被引量:1
  • 8[8]Ester, M., Kriegel, H.-P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noises. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 1996. 226~231. 被引量:1
  • 9[9]Ester, M., Kriegel, H.-P., Sander, J., et al. Incremental clustering for mining in a data warehousing environment. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann, 1998. 323~333. 被引量:1
  • 10[10]Sander, J., Ester, M., Kriegel, H.-P., et al. Density-Based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998,2(2):169~194. 被引量:1

共引文献228

同被引文献83

引证文献15

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部