期刊文献+

基于自适应仿射传播聚类算法的多模型建模方法 被引量:1

Multiple Models Soft-sensing Method Based on Adapt Affinity Propagation
下载PDF
导出
摘要 考虑到工业生产数据具有按工作点聚类和迁移的特点,提出了一种基于自适应仿射传播聚类(adAP)的多最小二乘支持向量机(LSSVM)算法进行软测量建模。该方法用adAP算法对训练样本进行分类以找到最优的聚类结果,采用LSSVM算法对各类样本分别建立子模型,并根据当前工作点所属子类的模型进行预测输出。将该方法用于聚丙烯熔融指数的软测量建模,结果表明,与其他方法相比该方法具有更高的回归精度和良好的泛化能力。 Since the industrial production samples are clustered around different operat- ing points, a soft-sensing method with multiple models based,on Adaptive Affinity Propagation Clustering Algorithm (adAP) and Least Square Support Vector Machine (LSSVM) is proposed. Classify the training samples into several classes using the adAP clustering to find the best clustering result, and train the sub-models by LSSVM accord- ing to corresponding sub-class samples. The test samples are assigned to appropriate sub-class, then predicted outputs are estimated by corresponding sub-models. The sim- ulation results of Melt Index indicate that the proposed method has better prediction ac- curacy and generalization performance.
出处 《青岛科技大学学报(自然科学版)》 CAS 北大核心 2012年第5期515-519,共5页 Journal of Qingdao University of Science and Technology:Natural Science Edition
基金 国家自然科学基金项目(51104175) 山东省自然科学基金项目(ZR2011FM014)
关键词 软测量 多模型 自适应仿射传播聚类算法 最小二乘支持向量机 soft-sensing, multiple model, adaptive affinity propagation clustering algo-rithm, least square support vector machine
  • 相关文献

参考文献12

二级参考文献39

共引文献211

同被引文献12

  • 1王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:144
  • 2Frey B 1, Dueck D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814):972-976. 被引量:1
  • 3Shang F, Jiao L c, Shi J, et al. Fast affinity clustering: a multilevel approach[J]. Pattern Cognition, 2012, 45(1):474-486. 被引量:1
  • 4Su Z, Wang P, Shen J, et al. Multi-model strategy based evidential soft sensor model for predicting evaluation of variables with uncertainty[J]. Applied Soft Computing, 2011, 11(2):2595-2610. 被引量:1
  • 5Ge Z, Song Z. A Comparative study of just-in-time-learning based methods for online soft sensor modeling[J]. Chemometrics and Intelligent Laboratory System, 2010, 104(2):306-307. 被引量:1
  • 6Liu B S, Li Y J, Xing Z W, et al. Research on freight traffic forecast based on wavelet and support vector machine[C]. Machine Learning and Cybernetics, 2006 International Conference on. IEEE, 2006:2524-2530. 被引量:1
  • 7He Y, Chen Q, Wang X, et al. An adaptive affinity propagation document clustering[J]. Informatics and Systems (INFOS), 2010 The 7th International Conference on. IEEE, 2010:1-7. 被引量:1
  • 8Cheng S, Hong X, Harris C J, et al. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization[J]. IEEE Transactions on Systems, Man and Cybernetics-part B: Cybernetics, 2004, 34(2):898-911. 被引量:1
  • 9田华阁,田学民,邓晓刚.基于Kalman-OLS的聚丙烯熔融指数软测量[J].控制工程,2010,17(S1):83-86. 被引量:4
  • 10巨稳,田学民.基于混合核函数的OLS软测量建模方法研究[J].石油化工自动化,2011,47(1):31-35. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部