期刊文献+

基于局部线性嵌入的半监督仿射传播聚类算法 被引量:3

Semi-supervised affinity propagation clustering algorithm based on local linear embedding
下载PDF
导出
摘要 针对运用半监督仿射传播聚类算法处理高维数据时聚类精度低和计算量大的问题,提出一种基于局部线性嵌入的半监督仿射传播聚类算法.该算法首先通过LLE算法将高维输入数据集映射到低维空间得到低维数据集,计算低维数据集的相似度矩阵,再用半监督算法调整相似度矩阵,最后用仿射传播聚类算法对低维数据进行聚类分析.仿真结果表明,本文提出的算法与半监督仿射传播聚类算法相比,在处理高维数据时聚类效果更好,精度更高,迭代次数更少. Aimed at the problem of low clustering precision and time-consuming calculation of high-dimensional data sets with semi-supervised affinity propagation clustering algorithm,a local linear embeddingbased clustering algorithm of semi-supervised affinity propagation(LLE-SAP)is proposed.Firstly,with this algorithm,the high-dimensional input data set will be mapped into low-dimensional space with LLE algorithm to get a low-dimensional data set.Then the similarity matrix of the low-dimensional data is evaluated and adjusted with semi-supervised algorithm.Finally,the clustering analysis of the low-dimensional data will be conducted with affinity propagation clustering algorithm.Simulation result shows that compared with the algorithm available,the proposed algorithm will have higher precision,fewer iterations,and better effect for treating high-dimensional data.
出处 《兰州理工大学学报》 CAS 北大核心 2015年第1期96-100,共5页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(51265032 61263003) 甘肃省高校基本科研业务费项目(1203ZTC061)
关键词 数据挖掘 半监督 仿射传播聚类 局部线性嵌入算法 data mining semi-supervision affinity propagation clustering local linear embedding algorithm
  • 相关文献

参考文献5

二级参考文献49

  • 1高洪深,陶有德.BP神经网络模型的改进[J].系统工程理论与实践,1996,16(1):67-71. 被引量:60
  • 2王和勇,郑杰,姚正安,李磊.基于聚类和改进距离的LLE方法在数据降维中的应用[J].计算机研究与发展,2006,43(8):1485-1490. 被引量:31
  • 3刘安,刘春生.基于RBF神经网络的非线性系统故障诊断[J].计算机仿真,2007,24(2):141-144. 被引量:19
  • 4Seung H, Lee D. The manifold ways of perception [J]. Science, 2000, 290(5500) : 2268 - 2269. 被引量:1
  • 5Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323 - 2326. 被引量:1
  • 6Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319- 2323. 被引量:1
  • 7Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373- 1396. 被引量:1
  • 8He X, Niyogi P. Locality preserving projections [C] // Advances in Neural Information Processing Systems. Vancouver, Canada, 2003: 153- 160. 被引量:1
  • 9Chang Y, Hu C, Turk M. Manifold of facial expression [C] // Proc IEEE International Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, 2003:28 - 35. 被引量:1
  • 10Polito M, Perona P. Grouping and dimensionality reduction by locally linear embedding [C]// NIPS, Vancouver, British Columbia, Canada, 2001 : 1255 - 1262. 被引量:1

共引文献63

同被引文献31

  • 1庞彦伟,俞能海,沈道义,刘政凯.基于核邻域保持投影的人脸识别[J].电子学报,2006,34(8):1542-1544. 被引量:15
  • 2文贵华,包丽,丁月华.局部线性嵌入算法中参数的选取[J].计算机应用研究,2007,24(2):60-62. 被引量:11
  • 3刘世成,王海清,李平.基于多向核主元分析的青霉素生产过程在线监测[J].浙江大学学报(工学版),2007,41(2):202-207. 被引量:9
  • 4KRAMER M A.Nonlinear Principal component analysis using autoassociative neural networks[J].AIChE Journal,1991,37(2):233-243. 被引量:1
  • 5QIN S J,MCAVOY T J.Nonlinear PLS modeling using neural networks[J].Computers and Chemical Engineering,1992,16(4):379-391. 被引量:1
  • 6DONG D,MCAVOY T J.Batch tracking via nonlinear principal analysis[J].AIChE Journal,1996,42(8):2199-2208. 被引量:1
  • 7LEE J M,YOO C,LEE I B.Fault detection of batch processes using multiway kernel principal component analysis[J].Computers and Chemical Engineering,2004,28(9):1837-1847. 被引量:1
  • 8ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326. 被引量:1
  • 9HE Q P,WANG J.Statistics pattern analysis:a new process monitoring framework and its application to semiconductor batch processes[J].AIChE Journal,2011,57(1):107-121. 被引量:1
  • 10马贺贺.基于数据驱动的复杂工业过程故障检测方法研究[D].上海:华东理工大学,2012. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部