期刊文献+

基于密度敏感距离的多级近邻传播聚类算法 被引量:1

Multilevel affinity propagation clustering based on density-sensitive distance
下载PDF
导出
摘要 针对近邻传播算法(AP)在处理大规模复杂数据集时聚类时间和精度上的不足,调整密度敏感距离作为相似性度量,提出一种基于密度敏感距离的多级近邻传播聚类算法.首先将原数据集构造为k最近邻稀疏图,以局部长度作为相似性测度,应用AP算法对数据集进行初步聚类;然后以全局距离作为相似性测度,多次应用AP算法再聚类,直到得到合适的聚类数目.实验结果表明,该算法在处理规模较大、结构较复杂的数据集时聚类时间与效果明显好于传统的AP算法. For the insufficient of time complexity and accuracy about Affinity Propagation (AP) algorithm in dealing with large-scaled and complex datasets,an adjusted density-sensitive distance is utilized as the similarity measure,and a Multilevel Affinity Propagation clustering algorithm based on Density-Sensitive Distance (MAP-DSD) is proposed.Firstly,by using the original datasets,a nearest neighbor sparse graph is constructed,and applying AP clustering algorithm,which let Local-length as similarity measure,preliminary clustering is obtained.Then,repeatedly applying AP algorithm with the Global-distance as the similarity measure to cluster on the preliminary clustering datasets,the appropriate cluster number is obtained.The results of experiments show that the algorithm in processing large-scaled and complex datasets outperforms is better than the original AP algorithm in terms of speed and effects.
出处 《兰州理工大学学报》 CAS 北大核心 2013年第6期85-89,共5页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(11361033) 甘肃省自然科学基金(1212RJZA029)
关键词 近邻传播 密度敏感距离 多级聚类 无监督聚类 affinity propagation density-sensitive distance multilevel clustering unsupervised clustering
  • 相关文献

参考文献9

  • 1FREY B J, DUCK D. Clustering by passing messages between data points [J].Science, 2007,315(5841) : 972-976. 被引量:1
  • 2肖宇,于剑.基于近邻传播算法的半监督聚类[J].软件学报,2008,19(11):2803-2813. 被引量:165
  • 3SUMEDHA M I., WEIGT M. Unsupervised and semi-super- vised clustering by message passing: Soft-constraint affinity propagation [J].Physical Journal, 2008,66(1) : 125-135. 被引量:1
  • 4GIVONI I E, FREY B J. Semi-supervised affinity propagation with instance-level constraints [C]//Proc of the 12th Interna- tional Conferences Artificial Intelligence and Statistics. Clear- water: [s. n. ], 2009(5) : 161-168. 被引量:1
  • 5ULRICH B, ANDREAS K, SEPP H. APCluster: an R package for affinity propagation clustering[J]. Bioinformaties, 2011,27 (17) : 2463-2464. 被引量:1
  • 6HONGJUN W, RUIHUA N, XINGNIAN L. Constraint pro- jections for semi-supervised affinity propagation[J]. Knowl- edge-Based Systems, 2012 (36) : 315-321. 被引量:1
  • 7王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 8CHAPELI.EO, ZIEN A. Semi--supervised classification by low density separation [C]//Proceedings of the Tenth Internation- al Workshop on Artificial Intelligence and Statistics. Barbados: Society for Artificial Intelligence and Statistics, 2005 :57-64. 被引量:1
  • 9DIJKSTRA E W. A note on two problems in connection with graphs [J]. Numerical Mathematics, 1959,1:269-271. 被引量:1

二级参考文献13

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Fledler M. Algebraic connectivity of graphs [J ]. Czechoslovak Mathematical Journal, 1973,23 (98) : 298 - 305. 被引量:1
  • 3Shi J, Malik J. Normalized cuts and image segmentation [J ]. IEEE Trans on PAMI, 2000,22(8):888 - 905. 被引量:1
  • 4Zelnik-Manor L, Perona P. Self-tuning spectral clustering[A]. Advances in Neural Information Processing Systems (NIPS17) [C]. Cambridge,MA: MIT Press,2005. 1601 - 1608. 被引量:1
  • 5Zhou D, Bousquet O, Lal T N, et al. Learning with Local and Global Consistency[ A ]. Advances in Neural Information Processing Systems (NIPS16) [C]. Cambridge, MA: MIT Press, 2004. 321 - 328. 被引量:1
  • 6Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts[ A]. Proceedings of the Eighteenth International Conference on Machine Learning (ICML18)[C]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 2001. 19 - 26. 被引量:1
  • 7Chapelle O, Zien A. Semi-supervised classification by low density separation [ A ]. Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics [ C ]. Barbados:Society for Artificial Intelligence and Statistics, 2005.57- 64. 被引量:1
  • 8Meila M, Xu L.Multiway cuts and spectral clustering[R]. University of Washington, 2003. 被引量:1
  • 9Meila M, Shi J. A random walks view of spectral segmentation [A]. Proceedings of International Workshop on AI and Statistics [ C ]. Florida, USA: Society for Artificial Intelligence and Statistics, 2001. 被引量:1
  • 10Dijkstra E W. A note on two problems in connection with graphs [J]. Numerical Mathematics, 1959,1 : 269 - 271. 被引量:1

共引文献223

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部