期刊文献+

密度敏感的层次化聚类算法研究 被引量:3

Density-sensitive hierarchical clustering algorithm
下载PDF
导出
摘要 以密度敏感距离作为相似性测度,结合近邻传播聚类算法和谱聚类算法,提出了一种密度敏感的层次化聚类算法。算法以密度敏感距离为相似度,多次应用近邻传播算法在数据集中选取一些"可能的类代表点";用谱聚类算法将"可能的类代表点"再聚类得到"最终的类代表点";每个数据点根据其类代表点的类标签信息找到自己的类标签。实验结果表明,该算法在处理时间、内存占用率和聚类错误率上都优于传统的近邻传播算法和谱聚类算法。 A hierarchical clustering algorithm based on density-sensitive distance which combined with Affinity Propagation (AP)algorithm and spectral clustering algorithm is proposed. Some“possible exemplars”are selected in the datasets by considering density-sensitive distance as similarity measure and repeatedly using AP algorithm;Applying the spectral clus-tering algorithm in the“possible exemplars”, the“final exemplars”are obtained; Each data points are assigned through the labels of their corresponding representative exemplars. Experimental results demonstrate that the algorithm outperforms the original AP algorithm and spectral clustering algorithm in terms of speed, memory usage, and clustering error rate.
出处 《计算机工程与应用》 CSCD 2014年第4期190-195,共6页 Computer Engineering and Applications
基金 甘肃省自然科学基金(No.1212RJZA029)
关键词 近邻传播 谱聚类 密度敏感距离 层次化 affinity propagation spectral clustering density-sensitive distance hierarchical
  • 相关文献

参考文献2

二级参考文献20

  • 1Frey B J, Dueck D. Clustering by Passing Messages Between Data Points[J]. Science, 2007, 315(5814): 972-976. 被引量:1
  • 2Leone M, Sumedha, Weigt M. Clustering by Soft-constraint Affinity Propagation: Applications to Gene-expression Data[J]. Bioinformatics, 2007, 23(20): 2708-2715. 被引量:1
  • 3Xiao Jianxiong, Wang dingdong, Tan Ping. Joint Affinity Propagation for Multiple View Segmentation[C]//Proc. of the 11th International Conference on Computer Vision. [S. l.]: IEEE Press, 2007: 1-7. 被引量:1
  • 4Ding C, He Xiaofeng. K-Nearest Neighbor in Data Clustering: Incor-porating Local Information into Global Optimization[C]// Proc. of the 19th Annual ACM Symposium on Applied Computing. [S. l. ]: ACM Press, 2004: 584-589. 被引量:1
  • 5Yu SX, Shi J. Segmentation given partial grouping constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183. 被引量:1
  • 6Hertz T, Shental N, Bar-Hillel A, Weinshall D. Enhancing image and video retrieval: Learning via equivalence constraint. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 2003.668-674. 被引量:1
  • 7Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley CE, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 577-584. 被引量:1
  • 8Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, 2002. 307-314. 被引量:1
  • 9Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, 2000. 1103-1110. 被引量:1
  • 10Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global consistency. In: Thrun S, Saul L, SchSlkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004. 321-328. 被引量:1

共引文献101

同被引文献39

  • 1曾昭才.移动统计——移动网络分析的另一宝藏[J].移动通信,2005,29(11):93-95. 被引量:1
  • 2严蔚敏 吴伟民.数据结构[M].北京:清华大学出版社,1997.. 被引量:272
  • 3王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 4周天圆.智能算法在电信业务用户体验感知分析中的应用[D].长春:吉林大学计算机科学与技术学院,2011. 被引量:2
  • 5苗谦,王国胤,刘清,等.粒计算:过去、现在与展望[M].北京:科学出版社,2007:143-144. 被引量:2
  • 6Reicheld F F, Sasser W E. Zero defections: Quality comes to services[J]. Harvard Business Review, 1990, 42(9): 105-110. 被引量:1
  • 7Han J W,Kamber M,Pei J.数据挖掘概念与技术[M].3版.北京:机械工业出版社,2012. 被引量:1
  • 8Mahmud M S, Rahman M M, Akhtar M N. Improvement of K-means Clustering algorithm with better initial cen- troids based on weighted average[ C]//2012 7^th Interna- tional Conference on Electrical and Computer Engineering. Dhaka: IEEE, 2012:647-1550. 被引量:1
  • 9Teng S H, Du H L, Zhang W, et al. A Cooperative net- work intrusion detection based on heterogeneous distance function clustering[ C]//[ s. l. ] : CSCWD, 2010: 140- 145. 被引量:1
  • 10HAN J W,MICHELINE K.数据挖掘概念与技术[M].范明,孟晓峰,译.北京:机械工业出版社,2012. 被引量:4

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部