期刊文献+

基于密集度量元的近邻传播聚类算法 被引量:1

Algorithm of Affinity Propagation Clustering Based on Density Similarity Measurement
下载PDF
导出
摘要 聚类是数据挖掘领域中发现数据隐含模式的有效方法之一.针对传统近邻传播聚类算法中采用欧式距离表示数据相似度,不能有效处理复杂结构数据的不足,提出了一种基于密集度量元的近邻传播聚类算法.该算法首先引入密度的思想,然后在近邻传播算法的框架下定义密度因子,设计新的空间一致性距离测度类欧式距离,构造基于密度敏感的相似性度量元,提高了传统算法处理复杂结构数据的性能.最后通过仿真实验验证了该算法的有效性. Clustering is an effective method for discovering the potential information in the fields of data mining.Aiming at the problem of traditional affinity propagation(AP)clustering algorithm denoted by Euclidean measure can not deal with the complicated data sets,a novel algorithm,affinity propagation with density similarity measurement(APDSM),is presented.Firstly,the idea of density is introduced.Then under the frame of traditional affinity propagation,the density gene is defined and novel similar-Euclidean measure is designed.A density sensitive similarity measurement is constructed as well.Finally experiment is used to validate the algorithm.
作者 常瑞花
出处 《微电子学与计算机》 CSCD 北大核心 2015年第5期1-5,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61309022) 陕西省自然科学基金项目(2013JQ8031) 武警工程大学基础研究项目(WJY201315)
关键词 密度 近邻传播 聚类 density affinity propagation clustering
  • 相关文献

参考文献7

二级参考文献62

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Frey B J and Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976. 被引量:1
  • 3Givoni I E and Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600. 被引量:1
  • 4Jia Sen, Qian Yun-tao, and Ji Zhen, Band hyperspectral imagery using affinity. Proceedings of the 2008 Digital Image Techniques and Applications, Canberra, ACT selection for Propagation. Computing: 1-3.12.2008:137-141. 被引量:1
  • 5Gang Li, Lei brain MR International (ISCAS 2009) Guo, and Liu Tian-ming, et at. Grouping of images via affinity propagation. IEEE Symposium on Circuits and Systems, 2009 Taipei, Taiwan, 5.24. 2009: 2425-2428. 被引量:1
  • 6Dueck D, Frey B J, and Jojic N, et al. Constructing treatment portfolios using affinity propagation[C]. Proceedings of 12th Annual International Conference, RECOMB 2008. Singapore. 3.30-4.2, 2008: 360-371. 被引量:1
  • 7Leone M, Sumedha, and Weigt M. Clustering by soft-constraint affinity propagation: applications to gene- expression data. Bioinformatics, 2007, 23(20): 2708-2715. 被引量:1
  • 8Alexander Hinneburg and Daniel A Keim. A general approach to clustering in large databases with noise. Knowledge and Information Systems, 2003, 5(4): 387-415. 被引量:1
  • 9Little M A, McSharry P E, Hunter E J, and Lorraine O. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015-1022. 被引量:1
  • 10A Guttman. R-Tree: A dynamic index structure for spatial searching. The ACM SIGMOD Int'l Conf on Management of Data, Boston, MA, 1984 被引量:1

共引文献1451

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部