期刊文献+

一种实用高效的聚类算法 被引量:26

An Applicable and Efficient Clustering Algorithm
下载PDF
导出
摘要 在信息处理研究领域,现有的大多数聚类算法都需要人为地给出一些参数.然而,在没有先验知识的情况下,人为地确定这些参数是十分困难的,而且现有的聚类算法的时空效率也有待于进一步提高.为了解决这一难题,首先根据样本分布特性,通过数学分析,得到确定样本空间划分间隔数的数学函数,然后,再根据样本分布特性,采用爬山的策略得到样本类的划分,最后提出了一种实用而高效的聚类算法.从多个角度分析了该算法的性能,并将该算法应用于中文文本聚类.理论分析和应用结果都表明,该算法不仅不需要人为确定参数,同时,还可以提高信息处理的时空效率和性能. In the research on IR (information retrieval), lots of clustering algorithms have been developed, and in most of them some parameters should be determined by hand. However, it is very difficult to determine them manually without any prior domain knowledge. To solve this problem, an applicable and efficient clustering algorithm is presented. It aims at avoiding any parameter to be determined by hand, and at the same time, improving the efficiency of clustering and the property of IR. The new clustering algorithm is analyzed on several facets and applied later to cluster Chinese documents. The results of the application confirm that the new clustering algorithm is very applicable and efficient.
出处 《软件学报》 EI CSCD 北大核心 2004年第5期697-705,共9页 Journal of Software
基金 国家自然科学基金60173027~~
关键词 信息处理 聚类 子空间 模式识别 IR (information retrieval) clustering subspace pattern recognition
  • 相关文献

参考文献2

二级参考文献43

  • 1[1]Broder,A.Z.,Glassman,S.C.,Manasse,M.S.Syntactic clustering of the Web.Technical Report,1997-015,Palo Alto,CA:Digital Systems Research Center (Digital),1997. 被引量:1
  • 2[2]Chang,C.H.,Hsu,C.C.Customizable multi-engine search tool with clustering.Computer Network and ISDN Systems,1997,29(8-13):1217~1224. 被引量:1
  • 3[3]Chen,L.,Katya,S.Webmate:a personal agent browsing and searching.In:Sycara,K.P.,Wooldridge,M.,eds.Proceedings of the 2nd International Conference on Autonomous Agents.New York:ACM Press,1998.132~139. 被引量:1
  • 4[4]Ron,W.,Bienvenido,V.,Mark,A.S.,et al.Hypursuit:a hierarchical network search engine that exploits content-link hypertext clustering.In:ACM,ed.Proceedings of the 7th ACM Conference on Hypertext.New York:ACM Press,1996.180~193. 被引量:1
  • 5[5]Ackerman,M.,Billsus,D.,Gaffney,S.,et al.Learning probabilistic user profiles.AI Magazine,1997,18(2):47~56. 被引量:1
  • 6[6]Cheeseman,P.,Stutz,J.Bayesian classification (autoclass):theory and results.In:Fayyad,U.M.,Piatetsky-Shapiro,G.,Smyth,P.,et al.,eds.Advances in Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI/MIT Press,1996.153~180. 被引量:1
  • 7[7]Agrawal,R.,Srikant,R.Fast algorithm for mining association rules.In:Jorge,B.B,Matthias,J.,Carlo,Z.,eds.Proceedings of the 20th International Conference on Very Large Databases.Santiago:Morgan Kaufmann Publishers,Inc.,1994.487~499. 被引量:1
  • 8[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu. 被引量:1
  • 9[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801. 被引量:1
  • 10[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181. 被引量:1

共引文献124

同被引文献304

引证文献26

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部