期刊文献+

一种有效的并行高维聚类算法 被引量:6

An Efficient Parallel Clustering Algorithm of High Dimension
下载PDF
导出
摘要 针对CLQUE算法聚类结果精确性不高的缺点,提出利用小波变换来生成自适应网格的方法对CLIQUE算法进行改进,将改进算法并行化以增强聚类维数升高时算法的可伸缩性,并将其应用于药品的销售预测。实验表明本算法聚类结果的精确性高,可伸缩性好,并且有效地降低了计算复杂度。 The classical CLIQUE algorithm is lost to a satisfying accuracy. So, a technique which generates adaptive grid by wavelet transform is put forward to improve it. The scalability of the improved algorithm is enhanced by par- allelization with the clustering dimensions increased. In the last, the algorithm is applied to drug sale estimation. The experimental demonstrate that the improved algorithm is more accurate, more scalable, and more efficient in decrease of computation complexity.
出处 《计算机科学》 CSCD 北大核心 2005年第3期216-218,共3页 Computer Science
基金 重庆市科技计划项目应用基础项目(7968)
关键词 并行 高维聚类算法 CLIQUE算法 小波变换 自适应网络 Clustering The CLIQUE algorithm Wavelet-transform Adaptive grid Parallel
  • 相关文献

参考文献10

  • 1Han J,Kamber M. Data Mining: Concepts and Techniques. High Education Press, Morgan Kaufman Publishers, 223-257 被引量:1
  • 2Guha U,Rastogi R,Shim K. CURE: an efficient clustering algorithm for large databases. Information System, 2001,26 (1): 35-58 被引量:1
  • 3Zhang T, Ramarkrishnan R,Livny M. BIRCH: an efficient data clustering method for very large database. 1996 ACM 0-89791-794-4/96/0006 被引量:1
  • 4Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial database with noise. In:Proc. 2nd Int'l Conf. Knowledge Discovering in Database and Data Mining (KDD-96) 被引量:1
  • 5Ankerst M,Breunig M,Kriegel H P,Sander J. OPTICS: Ordering points to identity the clustering structure. In: Proc. 1999 ACMSGMOD Int. Conf. Management of Data (SIGMOD'99), 49-60,Philadelphia, PA, June 1999 被引量:1
  • 6Agrawal J, et al. Automatic subspace clustering of high dimensional data mining applications. In:Proc. ACM SIGMOD Inter'l Conf.Management of Data, 1998. 73-84 被引量:1
  • 7Sheikholeslami G, Chatterjee S,Zhang A. WaveCluster: A multiresolution clustering approach for very large spatial database. In:Proc. 1998 Int. Conf. Very Large Data Base,New York, 1998. 428-439 被引量:1
  • 8Wang W,Yang J,Muntz R. STING: A statistical information grid approach to spatial data mining. In: Proc. 1997 Int. Corf. Very Large Data Bases (VLDB'97), Athens, Greece, 1997. 186 - 195 被引量:1
  • 9Nagesh H S,Goil S,Choudhary A N. A Scalable Parallel Subspace Clustering Algorithm for Massive Data Sets. In:Intl. Conf. on Parallel Processing,2000 被引量:1
  • 10Sunderam V S,Geist G A,et al. The PVM Concurrent System:Evolution, Experiences, and Trends. Applied Mathematical Sciences program of the Office of Energy Research,U. S. Department of Energy, 1993 被引量:1

同被引文献33

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部