1HAN J, KAMBER M. Data mining: concept and techniques[ M].2nd ed, Higher Education Press, 2001. 被引量:1
2KARYPIS G, HAN EH, KUMAR V, CHAMELEON: A hierarchical clustering algorithm using dynamic modeling[ J], Computer,1999.32(8) : 68 - 75. 被引量:1
3HAN EHG, KUMAR V, et al. TR-97-063, Clustering in a high-dimentional space using hypergraph models[ R]. Minneapolis, Department of Computer Science, University of Minnesota, 1997. 被引量:1
4ESTER M, KRIEGEL HP, SANDER J, et al. A density-Based Algorithm for Discovering Clusters in Large Databases with Noise[ A],Second International Conference on Knowledge Discovery and Data Mining Portland[ C]. Oregon, 1996. 226 -231. 被引量:1
5PILEVAR AH, SUKUMAR M, GCHL: A grid-clustering algorithm for high-dimensional very large spatial data bases[ J]. Pattern Recognition Letters, 2005, 26(7) :999 - 1010. 被引量:1
6KOHONEN T , Self - Organization and Associated Memory [ M ] ,Springer-Verlag, 1988. 被引量:1
1[1]Jackson J E. A User's Guide To Principal Components.John Wiley & Sons,1991 被引量:1
2[2]Jain A K, Dubes R C. Algorithms for Cluster Data. Prentice Hall,1988 被引量:1
3[3]Agrawal R,Srikant R. Fast Algorithms for Mining Association rules.Proc.of the 20th VLDB Conference, 1994 被引量:1
4[4]Kirkpatrick S, Gelatt C D,Vecchi H M P. Optimization by Simulated Annealing. Science, 1983,220(4598):671-680 被引量:1
5[5]Hua K A,Lang S D,Lee W K. A Decomposition-based Simulated Ann -ealing Technique for Data Clustering. SIGMOD, 1994:117-128 被引量:1
6[6]Cheeseman P, Stutz J. Baysian Classification (Autoclass):Theory and Result. U.M.Fayyad,G.Piatetsky-Shapiro, P.Smith,and R.thurusamy,editors, Advances in Knowledge Discovery and Data Mining, 1996 被引量:1
7[7]Frakes W B,Stemming Algorithms.In W.B.Frakes and R.Baeza-Yate,Editors,Information Retrieval Data Structures and Algorithms, Prentice Hall, 1992 被引量:1
8Arya S. Nearest neighbor serarching and applications[D]. University of Maryland, Colleage Park, MD, 1995. 被引量:1
9Han J, Kamber M. Data mining: concepts and techniques[J]. Higher Education Press,2001. 被引量:1
10Ng R, Han J. Efficient and effective clustering method for spatial data mining[C]. In: the 20th VLDB Conference, Santiago, Chile, 1994,144-145. 被引量:1
5Aggarwal C C. Re-designing Distance Functions and Dis tance-Based Applications for High Dimensional Data[J]. ACM SIGMOD Record, 2001, 30(1):13-18. 被引量:1
6Aggarwal C C. On the Effects of Dimensionality Reduction on High Dimensional Similarity Search[C]//Proc of the 20th ACM SIGMODSIGACT-SIGART Symp on Principles of Database Systems, 2001 : 256-266. 被引量:1
7Hinneburg, Aggarwal C C, Keim D. What Is the Nearest Neighbor in High Dimensional Spaces? [C]//Proc of the 26th Int'l Conf on Very large Data Bases, 2000:506-515. 被引量:1
8Beyer K, Goldstein J, Ramakrishnan R, et al. When Is Nearest Neighbors Meaningful? [C]//Proc of ICDT'99, 1999:217-235. 被引量:1