期刊文献+

增量Hessian LLE算法研究 被引量:4

Research on Incremental Hessian LLE Algorithm
下载PDF
导出
摘要 利用基于Ritz加速的逆幂迭代算法,在经典的Hessian LLE算法基础上提出一种增量LLE算法,能够高效地处理新增的一个或多个样本。该算法的核心思想是将增量流形学习问题转化为一个增量特征值问题,利用数值线性代数的工具进行求解,并分析算法的收敛性。在合成数据集和图像数据集上,验证该增量算法的效率和精确度。 This paper provides an incremental Hessian LLE algorithm,using the inverse iteration with Ritz acceleration,which is capable of dealing with one or more new samples efficiently.The core idea of the algorithm is to translate an incremental manifold problem into an incremental eigen-value problem,and to solve it by the tools of numerical linear algebra.The analysis of its convergence is given.Experiments on both artificial and image datasets confirm the efficiency and accuracy of the proposed method.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第6期159-161,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60921062)
关键词 维数约简 流形学习 增量学习 HessianLLE算法 dimensionality reduction manifold learning incremental learning Hessian LLE algorithm
  • 相关文献

参考文献6

  • 1王自强,钱旭.基于流形学习和SVM的Web文档分类算法[J].计算机工程,2009,35(15):38-40. 被引量:14
  • 2Tenenbaum J B, Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290(5500): 2319-2323. 被引量:1
  • 3Donoho D L, Grimes C. Hessian Eigenmaps: Locally Linear Embedding Techniques for High Dimensional Data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591-5596. 被引量:1
  • 4Law M, Jain A K. Incremental Nonlinear Dimensionality Reduction by Manifold Learning[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(3): 377-391. 被引量:1
  • 5Stewart G W. Accelerating the Orthogonal Iteration for the Eigenvectors of a Hermitian Matrix[J]. Numerische Mathematik, 1969, 13(4): 362-376. 被引量:1
  • 6Abdel-Mannan O, Hamza A B, Youssef A. Incremental Hessian Locally Linear Embedding Algoritbm[C]//Proc. of the 9th International Symposium on Signal Processing and Its Applications. [S. 1.]: IEEE Press, 2007: 1-4. 被引量:1

二级参考文献6

  • 1Vapnik V N.The Nature of Statistical Learning Theory[M].New York,USA:Springer,1995. 被引量:1
  • 2He Xiaofei,Niyogi P.Locality Preserving Projections[C]//Proc.of Conf.on Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2003:291-298. 被引量:1
  • 3Cai Deng,He Xiaofei,Han Jiawei.Document Clustering Using Locality Preserving Indexing[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(12):1624-1637. 被引量:1
  • 4Sha Fei,Saul L K,Lee D D.Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines[C]//Proc.of Conf.on Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2002:1041-1048. 被引量:1
  • 5Platt J.Fast Training of Support Vector Machines Using Sequential Minimal Optimization[C]//Proc.of Conf.on Advances in Kernel Methods-Support Vector Learning.Cambridge,USA:MIT Press,1999:185-208. 被引量:1
  • 6衣治安,吕曼.基于多分类支持向量机的入侵检测方法[J].计算机工程,2007,33(15):167-169. 被引量:7

共引文献13

同被引文献37

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部