期刊文献+

基于多信息融合的自适应局部线性嵌入算法

Adaptive local linear embedding algorithm based on multiple information fusion
下载PDF
导出
摘要 局部线性嵌入算法LLE的降维性能与挖掘的流形结构密切相关,但LLE挖掘的流形结构单一,并且对邻域参数选取敏感,无法提取全面的流形局部结构,限制了LLE的降维性能。为此,本文提出基于多信息融合的自适应局部线性嵌入算法MIF-ALLE。MIF-ALLE首先利用切空间近似判据自适应选择邻域参数,获取更准确的局部邻域;然后,将局部邻域中蕴含的切空间角度信息与局部线性信息相融合,挖掘更全面的流形局部结构,降低局部低维嵌入的偏差;最后,在公开轴承数据集以及实验室提取的轴承数据集上进行实验验证。实验结果表明:MIF-ALLE可以挖掘更全面的流形结构,提取更显著的特征,轴承故障诊断准确率最高可达100%。 The dimensionality reduction performance of Local Linear Embedding algorithm LLE is closely related to the manifold structure mined.However,the manifold structure mined by LLE is singular and sensitive to the selection of neighborhood parameters,making it difficult to extract a comprehensive local structure of the manifold,which limits its dimensionality reduction performance.Therefore,this article proposes an adaptive local linear embedding algorithm based on multiple information fusion MIF-ALLE.MIF-ALLE firstly uses tangent space approximation criterion to adaptively select neighborhood parameters to obtain more accurate local neighborhood;Then,the angle information of Tangent space contained in the local neighborhood is fused with the local linear information to mine a more comprehensive local structure of the manifold and reduce the deviation of local low dimensional embedding;Finally,the experimental verification is carried out on the bearing data set published and the bearing data set extracted from the laboratory.The experimental results show that MIF-ALLE can mine more comprehensive manifold structures,extract more significant features,and achieve bearing fault diagnosis accuracy of up to 100%.
作者 刘庆强 魏朝阳 Liu Qingqiang;Wei Zhaoyang(School of Electrical Information Engineering,Northeast Petroleum University,Daqing 163318,China)
出处 《电子测量技术》 北大核心 2023年第24期112-118,共7页 Electronic Measurement Technology
基金 海南省自然科学基金(623MS071)项目资助
关键词 局部线性嵌入算法 流形结构 自适应邻域 轴承故障诊断 local linear embedding adaptive neighborhood manifold structure bearing fault-diagnosis
  • 相关文献

参考文献6

二级参考文献59

  • 1李兵,韩睿,何怡刚,张晓艺,侯金波.改进随机森林算法在电机轴承故障诊断中的应用[J].中国电机工程学报,2020,40(4):1310-1319. 被引量:75
  • 2宫文峰,陈辉,张美玲,张泽辉.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. 被引量:82
  • 3Jolliffe I T. Principal component analysis[M]. New York: Springer, 1989. 被引量:1
  • 4Cox T F, Cox M A A. Multidimensional scaling[M]. Flori- da:Chapman and Hall, 1994. 被引量:1
  • 5Duda R O, Hart P E, Stork D G. Pattern classification[M]. New York:Wiley-Interscience, 2001. 被引量:1
  • 6Tenenbaum J B, de Silva V, Langfor J C. A global geometric framework for nonlinear dimensionality reduction[J]. Sci- ence, 2000,290(5500) :2319-2323. 被引量:1
  • 7Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290(5500): 2323-2326. 被引量:1
  • 8Saul L K,Roweis S T. Think globally, fit locally:Unsuper- vised learning of low dimensional manifolds[J]. Journal of Machine Learning Research, 2003(4):119-155. 被引量:1
  • 9Belkin M, Niyogi P. Laplacian eigenmaps and spectral tech- niques for embedding and clustering[C]//Proc of Advances in Neural Information Processing Systems, 2001 : 581-591. 被引量:1
  • 10Weinberger K Q, Sha F, Saul L K. Learning a kernel matrix for nonlinear dimensionality reduction[C]//Proc of the Inter- national Conference on Machine Learning, 2004:836-849. 被引量:1

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部