期刊文献+

分块Gram-Schmidt正交化算法及其应用 被引量:3

A block Gram-Schmidt algorithm with its application
下载PDF
导出
摘要 Gram-Schmidt正交化算法是数值线性代数中的基本算法之一,主要用于计算矩阵QR分解.经典和修正Gram-Schmidt正交化算法基于level1/2BLAS运算,低级BLAS运算对cache的利用率比较低,从而限制了算法性能.提出一种新的分块Gram-Schmidt正交化算法.新算法通过重正交保证产生矩阵Q的正交性达到机器精度,并且利用level3BLAS运算提高了算法性能.数值试验表明,新算法能使得矩阵Q的正交性达到机器精度,并且新算法使得性能得到显著提高. Gram-Schmidt algorithm is one of the fundamental methods in linear algebra, which is mainly used to compute QR decomposition. The classical and modified Gram-Schmidt are both based on level 1 or level 2 BLAS operations which have low cache reuse. In this paper, a new block Gram-Schmidt algorithm is proposed. The new algorithm ensures the orthogonality of resulting matrix Q is close to machine precision and improves performance because of using level 3 BLAS. Numerical experiments confirm the favorable numerical stability of the new algorithm and its effectiveness on modem computers.
作者 赵韬 姜金荣
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2009年第2期224-229,共6页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金(60533020) 中国科学院知识创新工程青年人才领域项目(O714051A01)资助
关键词 GRAM-SCHMIDT Arnoldi算法 正交化 分块算法 QR分解 Gram-Schmidt, Amoldi algorithm, orthogonalization, block algorithm, QR
  • 相关文献

参考文献15

  • 1Golub GH, Van Loan CF, Matrix computations, 3rd ed. Baltimore: Johns Hopkins University Press, 1996 被引量:1
  • 2Daniel JW, Gragg WB, Kaufman L, et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR faetorization. Math Comp, 1976, 30:772 - 795 被引量:1
  • 3Stewart GW. Matrix algorithms: basic decompositions. Philadelphia: SIAM, 1998 被引量:1
  • 4Jalby W, Philippe B. Stability analysis and improvement of the block Gram-Schmidt algorithm. SIAM J Sci Statist Comput, 1991, 12:1058 - 1073 被引量:1
  • 5Stathopoulos A, Wu K. A block orthogonalization procedure with constant sysnchronization requirements. SIAM J Sci Comput, 2002, 23:2165 - 2182 被引量:1
  • 6Higham NJ. Accuracy and stability of numerical algorithms, 2nd ed. Philadelphia: SIAM, 2002 被引量:1
  • 7Hoffmann W. Iterative algorithms for Grarn-Schmidt orthogonalization. Computing, 1989, 41:353 - 367 被引量:1
  • 8Abdelmalek NN. Round off error analysis for Gram-Schmidt method and solutions of linear least squares problems. BIT, 1971, 11:345 - 368 被引量:1
  • 9Giraud L, Langou J, Rozloznik M, et al, Rounding error analysis of the classical Gram-Schmidt orthogonalization process. Numer Math, 2005, 101:87 - 100 被引量:1
  • 10Bjorck A. Numerics of Gram-Schmidt orthogonalization. Linear Algebra Appl, 1994, 198 : 297 - 316 被引量:1

同被引文献38

  • 1周扬眉,刘经南,刘基余.回代解算的LAMBDA方法及其搜索空间[J].测绘学报,2005,34(4):300-304. 被引量:17
  • 2刘志平,何秀凤.改进的GPS模糊度降相关LLL算法[J].测绘学报,2007,36(3):286-289. 被引量:22
  • 3叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004.. 被引量:35
  • 4TEUNISSEN P. The Least-squares Ambiguity Decorrela- tion Adjustment: a Method for Fast GPS Integer Ambigui- ty Estimation[J]. Journal of Geodesy, 1995, 70 (1-2) : 65 -82. 被引量:1
  • 5JONGE P, TIBERIUS C. The LAMBDA Method for Inte- ger Ambiguity Estimation : Implementation Aspects [ R ]. Delft : Delft University of Technology, 1996. 被引量:1
  • 6TEUNISSEN P. A New Method for Fast Carrier Phase Ambiguity Estimation [ C ] // Proceedings of IEEE PLANS' 94. Las Vegas:[ s. n. ] . 1994 :562-573. 被引量:1
  • 7HANS. A New Method for Constructing Multi-satellite Ambiguity Combinations for Improved Ambiguity Resolu- tion ~ C ] //Proceedings of ION GPS-95. [ S. 1. ]: Palm Springs, 1995 : 1145-1153. 被引量:1
  • 8LI Z, GAO Y. A Method for Construction of High Dimen- sion Transformation Matrices in LAMBDA [ J ]. Geomatica, 1998(52) :433-439. 被引量:1
  • 9LIULT, HSUHT, ZHUYZ, et al. A New Approach to GPS Ambiguity Decorrelation[ J]. Journal of Geodesy,1999, 73(9) :478-490. 被引量:1
  • 10GRAFAREND E. Mixed Integer-real Valued Adjustment (IRA) Problems: GPS Initial Cycle Ambiguity Resolu- tion by Means of the LLL Algorithm[ J]. GPS Solutions, 2000, 4(2) :31-44. 被引量:1

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部