期刊文献+

保持局部邻域关系的增量Hessian LLE算法 被引量:2

Incremental Hessian LLE by Preserving Local Adjacent Information between Data Points
下载PDF
导出
摘要 Hessian LLE算法是一种经典的流形学习算法,但该方法是以批处理的方式进行的,当新的数据点加入时,必须重新运行整个算法,计算所有数据点低维嵌入,原来的运算结果被全部丢弃。鉴于此,提出了一种保持局部邻域关系的增量Hessian LLE(LIHLLE)算法,该方法通过保证流形新增样本点在原空间和嵌入空间局部邻域的线性关系不变,用其已有邻域点的低维坐标线性表示新增样本点,来得到新增点的低维嵌入,实现增量学习。在Swiss roll withhole和frey_rawface数据集上的实验表明,该方法简便、有效可行。 Hessian LLE algorithm is a classical manifold learning algorithm.However,Hessian LLE is a batch mode.If only new samples are observed,the whole algorithm must run repeatedly and all the former computational results are discarded.So,incremental Hessian LLE(LIHLLE) algorithm was proposed,which preserves local neighborhood relationship between the original space and the embedding space.New sample points were linearly reconstructed with exis-ting embedding results of local neighborhood samples.The proposed method can learn manifold in an incremental way.Simulation results in Swiss roll with hole and frey_rawface database testify the efficiency and accuracy of the proposed algorithms.
出处 《计算机科学》 CSCD 北大核心 2012年第4期217-219,226,共4页 Computer Science
基金 国家自然科学基金资助项目(60875040 60970014 61175067) 教育部高等学校博士点基金(200801080006) 山西省自然科学基金资助项目(2010011021-1) 山西省科技攻关项目(20110321027-02) 太原市科技局明星专项(09121001)资助
关键词 流形学习 HESSIAN LLE 增量学习 Manifold learning Hessian LLE Incremental learning
  • 相关文献

参考文献3

二级参考文献19

  • 1Tenenbaum J B, Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290(5500): 2319-2323. 被引量:1
  • 2Donoho D L, Grimes C. Hessian Eigenmaps: Locally Linear Embedding Techniques for High Dimensional Data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591-5596. 被引量:1
  • 3Law M, Jain A K. Incremental Nonlinear Dimensionality Reduction by Manifold Learning[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(3): 377-391. 被引量:1
  • 4Stewart G W. Accelerating the Orthogonal Iteration for the Eigenvectors of a Hermitian Matrix[J]. Numerische Mathematik, 1969, 13(4): 362-376. 被引量:1
  • 5Abdel-Mannan O, Hamza A B, Youssef A. Incremental Hessian Locally Linear Embedding Algoritbm[C]//Proc. of the 9th International Symposium on Signal Processing and Its Applications. [S. 1.]: IEEE Press, 2007: 1-4. 被引量:1
  • 6B Scholkopf,A Smola,K R Müller.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319 被引量:1
  • 7J Tenenbaum,V de Silva,J Langford.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323 被引量:1
  • 8M Belkin,P Niyogi.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396 被引量:1
  • 9S Roweis,L Saul.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326 被引量:1
  • 10Martin H C Law,Anil K Jain.Incremental nonlinear dimensionality reduction by manifold learning[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(3):337-391 被引量:1

共引文献85

同被引文献28

  • 1Bishop C M.Pattern Recognition and Machine Learning[M].New York:Springer,2006. 被引量:1
  • 2Jolliffe I T.Principal Component Analysis[M].New York:Springer,1986. 被引量:1
  • 3Fukunaga K.Introduction to Statistical Pattern Recognition(Second edition)[M].New York:Academic Press,1990. 被引量:1
  • 4He X,Niyogi P.Locality preserving projections[C]// Proceedings of the Advances in Neural Information Processing Systems(NIPS) 16.2003:585-591. 被引量:1
  • 5He X,Cai D,Yan S,et al.Neighborhood preserving embedding[C]//Proceeding of the IEEE International Coherence on Computer Vision(ICCV).2005:1208-1213. 被引量:1
  • 6Li H F,Jiang T,Zhang K S.Efficient and robust feature extraction by maximum margin criterion[J].IEEE Transactions on Neural Networks,2006,17(1):157-165. 被引量:1
  • 7Yan S C,Xu D,Zhang B Y,et al.Graph embedding and extensions:A general framework for dimensionality reduction[J].IEEE Transactions on pattern Analysis and Machine Intelligence,2007,29(1):40-51. 被引量:1
  • 8Cheng H,Liu Z,Yang L,et al.Sparse representation and learning in visual recognition:theory and applications[J].Signal Processing,2013,93(6):1408-1425. 被引量:1
  • 9Wright J,Ma Y,Mairal J,et al.Sparse representation for computer vision and pattern recognition[J].Proceedings of the IEEE,2010,98(6):1031-1044. 被引量:1
  • 10Qiao L,Chen S,Tan X.Sparsity preserving projections with applications to face recognition[J].Pattern Recognition,2010,43(1):331-341. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部