期刊文献+

一种基于局部判别正切空间排列的高光谱遥感影像降维方法 被引量:8

A Dimensionality Reduction Method for Hyperspectral Imagery Based on Local Discriminative Tangent Space Alignment
下载PDF
导出
摘要 提出一种基于局部判别正切空间排列(local discriminative tangent space alignment,LDTSA)的高光谱影像降维方法。LDTSA源于局部正切空间排列(LTSA)中的排列机制,在一个局域块内利用线性局部正切平面对类内样本的流形结构建模,同时还考虑到类间判别信息以最大化判别边界。利用多幅高光谱数据进行降维和分类试验。结果表明,LDTSA主要有三个优点:①在小样本问题上性能稳定;②在降维过程中保持类别间的判别信息;③有效挖掘数据集的几何流形结构。 A local discriminative tangent space alignment (LDTSA) based dimension reduction method is proposed, It applies the idea of part optimization and whole alignment and considers encoding the geometric and discrimina- tive information in a local patch, The experiment demonstrate the effectiveness of LDTSA compared with represent- ative dimensionality reduction algorithms, O LDTSA avoids the small-sample-size problern② LDTSA preserves the discriminative ability; ③LDTSA has the ability to detect the intrinsic structure from the hyperspectral data.
出处 《测绘学报》 EI CSCD 北大核心 2012年第3期417-420,共4页 Acta Geodaetica et Cartographica Sinica
基金 国家973计划(2011CB707105) 国家自然科学基金(40930532 41061130553 61102128) 中国科学院数字地球重点实验室开放基金(2010LDE006) 中央高校基本科研业务费专项资金(211274633) 中国博士后科学基金(211-180788)
关键词 高光谱遥感影像 降维 局部判别正切空间排列 局部最优化 全局排列 正切空间排列 流形学习 hyperspectral imagery dimension reduction part optimization whole alignment tangent space alignment learning of manifolds
  • 相关文献

参考文献18

  • 1张良培, 张立福..高光谱遥感[M],2005.
  • 2SHASHAHANI B M, LANDGREBE D A. The Effect of Unlabeled Samples in Reducing the Small Sample Size Problem and Mitigating the Hughes Phenomenon[J]. IEEE Transac- tions on Geoscience and Remote Sensing, 1994, 32 (5): 1087-1095. 被引量:1
  • 3ZHANG L, ZHONG Y, HUANG B, et al. Dimensionality Reduction Based on Clonal Selection for Hyperspeetral Imagery[J]. IEEE Transactions on Geoseienee and Remote Sensing, 2007, 45(12), 4172- 4185. 被引量:1
  • 4丁胜,袁修孝,陈黎.粒子群优化算法用于高光谱遥感影像分类的自动波段选择[J].测绘学报,2010,39(3):257-263. 被引量:25
  • 5QIAN S E, CHEN G Y. A New Nonlinear Dimensionality Reduction Method with Application to Hyperspectral Image Analysis[C] // Proceedings of IEEE International Geoscienee and Remote Sensing Symposium. Barcelona: IEEE, 2008: 270-273. 被引量:1
  • 6BACHMANN C M. AINSWORTH T L, FUSINA R A. Improved Manifold Coordinate Representations of Large- scale Hyperspectral Scenes [J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 ( 10 ) : 2786-2803. 被引量:1
  • 7BALASUBRAMANIAN M, Algorithm and Topological SCHWARTZ E. The Isomap Stability [J]. Science, 2002, 295(5552) : 7-7. 被引量:1
  • 8ZHANG T H, TAO D C. Patch Alignment for Dimensionality Reduction. Knowledge and Data Engineering [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1299-1313. 被引量:1
  • 9ROWEIS S T, SAUL L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Science, 2000, 290(5500): 2323-2326. 被引量:1
  • 10张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:72

二级参考文献16

  • 1CHEN Y S, WANG A L, ZHANG Y. Genetic Algorithm Based Reference Bands Selection in Hyperspectral Image Compression[C] // Proceedings of IEEE Conference on Industrial Electronics and Applications. Singapore: IEEE, 2008: 1023-1026. 被引量:1
  • 2CHION C, LANDRY J A. A Genetic programming-based Method for Hyperspectral Data Information Extraction: Agricultural Applications [J]. IEEE Transactions on Geoseience and Remote Sensing, 2008, 46(8): 2446-2457. 被引量:1
  • 3MOJARADI B, ABRISHAMI M. Dimensionality Reduction of Hyperspectral Data via Spectral Feature Extraction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 2091-2105. 被引量:1
  • 4VAPNIK V N. Statistical Learning Theory[M]. New York: Wiley, 1998. 被引量:1
  • 5MONTEIRO S T, KOSUGI Y. Particle Swarms for Feature Extraction of Hyperspectral Data [J]. IEICE Transactions on Information and Systems, 2007, 90(7) : 1038-1046. 被引量:1
  • 6GUALTIERI J A, CHETTRI S. Support Vector Machines for Classification of Hyperspeetral Data[C]// Proceedings oflGARSS. Honolulu: IEEE, 2000: 813-815. 被引量:1
  • 7MELGANI F, BRUZZONE L. Classification of Hyperspectral Remote Sensing Images with Support Vector Machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790. 被引量:1
  • 8CAMPS VALLS G, BRUZZONE L. Kernel based Methods for Hyperspeetral Image Classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1351-1362. 被引量:1
  • 9KENNEDY J, EBERHART R C. Particle Swarm Optimi zation[C]// Proceedings of IEEE International Conference on Neural Networks. Perth: IEEE Neural Networks Society, 1995:1942-1948. 被引量:1
  • 10KENNEDY J, EBERHART R C. A Discrete Binary Vet sion of the Particle Swarm Algorithm[C]//Proceedings of the World Multiconference on Systemic, Cybernetics and Informaties 1997. Piseataway: IEEE, 1997: 4104-4109. 被引量:1

共引文献95

同被引文献105

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部