期刊文献+

降维技术与方法综述 被引量:28

下载PDF
导出
摘要 为了更好地对数据实现降维,讨论了特征选择与特征变换两种技术。对于特征选择,按照特征子集的形成方法可分为穷举法、启发式方法、随机方法、智能优化方法等;按照评价函数的类别可分为筛选式、封装式、嵌入式。对于特征变换,传统的方法采用线性降维方法,主要有非负矩阵分解、因子分析、主成份分析、奇异值分解、独立成分分析等;目前的方法是非线性降维方法,以流形学习为代表。对各种不同方法详细探讨其原理与流程,并进行了性能比较。
出处 《四川兵工学报》 CAS 2010年第10期1-7,共7页 Journal of Sichuan Ordnance
基金 国家自然科学基金(60872075) 国家高技术发展计划(2008AA01Z227)
  • 相关文献

参考文献30

  • 1KUFLIK T, BOGER Z, SHOVAL P. Filtering search results using an optimal set of terms identified by an artificial neural network [ J ]. Information Processing & Management. 2006. 42(2) : 469-83. 被引量:1
  • 2卜华龙,夏静,韩俊波.特征选择算法综述及进展研究[J].巢湖学院学报,2008,10(6):41-44. 被引量:2
  • 3LIN S-W, CHEN S-C. PSOLDA: A particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis [ J ]. Applied Soft Computing, 2009, 9(3): 1008- 15. 被引量:1
  • 4YUSTA S C. Different metaheuristic strategies to solve the feature selection problem [ J ]. Pattern Recognition Letters, 2009, 30(5): 525-34. 被引量:1
  • 5NAKARIYAKUL S, CASASENT D P. An improvement on floating search algorithms for feature subset selection [J]. Pattern Recognition, 2009, 42(9): 1932-40. 被引量:1
  • 6SAMANTA B, BIRD G L, KUIJPERS M, et al. Prediction of periventricular leukomalacia. Part II : Selection of hemodynamic features using computational intelligence [ J]. Artificial Intelligence in Medicine, 2009, 46 ( 3 ) : 217 -31. 被引量:1
  • 7AMJADY N, KEYNIA F. Day-ahead price forecasting of electricity markets by a new feature selection algorithm and cascaded neural network technique [ J ]. Energy Conversion and Management, 2009, 50(12) : 2976 -82. 被引量:1
  • 8TSYMBAL A, PUURONEN S, PATTERSON D W. Ensemble feature selection with the simple Bayesian classifi- cation [J]. Information Fusion, 2003, 4(2): 87- 100. 被引量:1
  • 9VERMA B, ZHANG P. A novel neural-genetic algorithm to find the most significant combination of features in digital mammograms [J]. Applied Soft Computing, 2007, 7 (2) : 612 -25. 被引量:1
  • 10SIVAGAMINATHAN R K, RAMAKRISHNAN S. A hybrid approach for feature subset selection using neural networks and ant colony optimization [ J ]. Expert Systems with Applications, 2007, 33 (1) : 49 -60. 被引量:1

二级参考文献29

  • 1高利宏,曹佳.基因芯片可靠性分析及数据处理[J].第三军医大学学报,2006,28(1):80-82. 被引量:8
  • 2徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 3李丹,李国正,陆文聪.用于药物活性预报的Co-Training方法[J].计算机科学,2006,33(12):159-161. 被引量:3
  • 4Lander,E.S.Array of hope[J].Nature Genetics,1999,21 (Sup.2pl):3-4. 被引量:1
  • 5Scott,D.W.Multivariate Density Estimation:Theory,Practice and Visualization[M].Wiley Series in Probability and Mathematical Statistics.New York,London,Sydney:John Wiley & Sons,1992. 被引量:1
  • 6Golub,T.R.,Slonim,D.K.,Tamayo,P.,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537. 被引量:1
  • 7Wang,J.,B?,T.H.,Jonassen,I.,et al.Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data[J].BMC Bioinformatics,2003,4:60. 被引量:1
  • 8Vapnik V N.The Nature of Statistical Learning Theory[M].New York,USA:Springer,1995. 被引量:1
  • 9He Xiaofei,Niyogi P.Locality Preserving Projections[C]//Proc.of Conf.on Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,2003:291-298. 被引量:1
  • 10Cai Deng,He Xiaofei,Han Jiawei.Document Clustering Using Locality Preserving Indexing[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(12):1624-1637. 被引量:1

共引文献44

同被引文献302

引证文献28

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部