期刊文献+

用于药物活性预报的Co-Training方法 被引量:3

Prediction of Drug Activity by Using Co-Training
下载PDF
导出
摘要 在药物设计中,可以利用药物分子的构效关系模型进行药物活性的预报,从而降低药物开发的成本、缩短开发的周期。本文尝试结合Co-Training方法和嵌入式特征选择方法,提出了一种新的FESCOT(FeatureSelectionforCo-Training)算法。算法在药物活性数据集上进行了实验,结果显示结合了特征选择的Co-Training方法较之以前泛化能力有所提高。 The activity of drug molecule can be predicted by the QSAR (Quantitative Structure Activity Relationship) model, which overcomes the disadvantages of high cost and long cycle with the traditional experimental method only. With the fact that the number of drug molecule with known activity is less than those of unknown activity, it is important to predict molecular activities with the semi-supervised learning method. However, the numerous features of drug molecule affect the prediction accuracy of the QSAR model. Therefore, a novel algorithm named FESCOT (Feature Selection for Co-Training)is proposed in this paper, which combines Co-Training and an embedded feature selection method. Experiments are carried out on the data set of molecular activities, and the results show that generalization ability of FESCOT is better than that of Co-Training without feature selection.
出处 《计算机科学》 CSCD 北大核心 2006年第12期159-161,共3页 Computer Science
基金 国家自然科学基金(20503015) 上海市教委自然科学一般项目(05AZ67) 上海市教委E研究院-上海高校网格项目(20030301)的资助。
关键词 药物活性 半监督学习 特征选择 Molecular aetivity,Semi-supervised learning,Feature selection
  • 相关文献

参考文献6

  • 1Xu L, Wu Y, Hu C, Li H. A QSAR of the toxicity of aminobenzenes and their structures. Science in China (Series B), 2000,43(2):130-136 被引量:1
  • 2Blum A, Mitchell T. Combining labeled and unlabeled data with Co-Training. In: Proceedings of the 1998 COLT, Morgan Kaufmann Publishers, 1998.92-100 被引量:1
  • 3Goldman S, Zhou Y, Enhancing supervised learning with unlabeled data, In: Proceedings of the 17th ICML, San Franeisco,CA, Morgan Kaufmann,2000, 327-334 被引量:1
  • 4Zhou Z H, Li M. Semi-supervised regression with Co-Training.In: Proceedings of the 19^th IJCAI' 05, Edinburgh, Scotland 2005. 908-913 被引量:1
  • 5Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of machine learning research, 2003 (3): 1157-1182 被引量:1
  • 6Moody J, Utans J. Principled architeeture selection for neural networks: Application to corporate bond rating prediction. In:NIPS 4, Morgan KaufmannPublishers, Inc. , 1992. 638-690 被引量:1

同被引文献39

  • 1方敏.集成学习的多分类器动态融合方法研究[J].系统工程与电子技术,2006,28(11):1759-1761. 被引量:12
  • 2Neagu D,Guo G D.A data-driven approach for improved effective classification in predictive toxicology[C]//Proc of IEEE-ICCC(IEEE International Conference on Computational Cybernetics) ,Tallinn, Estonia, 2006. 被引量:1
  • 3Zhou Z H,Wu J,Tang W.Ensembling neural networks:Many could be better than all[J].Artificial Intelligence, 2002,137(1-2) : 239-263. 被引量:1
  • 4Geng X,Zhou Z H.Selective ensemble of multiple eigenspaces for face recognition[R].AI Lab,Computer Science & Technology Department, Nanjing University, Nanjing, China, 2003-08. 被引量:1
  • 5Parikh D, Kim M T,Oagaro J,et al.Combining classifiers for multisensor data fusion[C]//2004 IEEE International Conference on Systems, Man and Cybemetica, 2004,2( 10-13 ) : 1232-1237. 被引量:1
  • 6Giacinto G,Roli F.Dynamic classifier selection based on multiple classifier behavior[J].Pattern Recognition,2001,34(9): 1879-1881. 被引量:1
  • 7王伟.多分类器日文假名识别研究[D].哈尔滨:哈尔滨工业大学,2004. 被引量:1
  • 8Shahshahani B,Landgrebe D.The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions of Geoscience and Remote Sensing, 1994,32(5): 1087-1095. 被引量:1
  • 9Zhou Z H,Zhan D C,Yang Q.Semi-supervised learning with very few labeled training examples[EB/OL].Association for the Advancement of Artificial Intelligence.http ://www.aaai.org. 被引量:1
  • 10Blum A,Mitchell T.Combining labeled and unlabeled data with co-training[C]//COLT, 1998 : 92-100. 被引量:1

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部