期刊文献+

一种极化合成孔径雷达图像分类的混合方法 被引量:5

Hybrid algorithm for classification of polarimetric SAR images
下载PDF
导出
摘要 为了更好地对极化合成孔径雷达图像进行分类,提出了一种基于神经网络的混合方法.特征集包括图像的5个H/α系数和基于灰度共生矩阵的6个参数.采用主成分分析方法压缩特征维数,利用3层BP神经网络进行分类,并将Levenberg-Marquardt法与共轭梯度算法相结合求解网络权值.利用该算法对San Francisco地面的实测数据进行分类,实验结果显示该算法能有效分辨地形,且性能优于Wishart最大似然估计方法. In order to classify polarimetric synthetic aperture radar(SAR) images more accurately,a hybrid method based on neural network is proposed.The feature set consists of five H/α parameters and six gray-level co-occurrence matrix parameters.Principle component analysis is used to reduce the dimensions of the feature set.A 3-layer structure is adopted for BP neural network.The Levenberg-Marquardt method and the conjugate gradient method are used to solve the weights and biases.Experimental results for real data of San Francisco demonstrate that the proposed algorithm is effective and the accuracy is higher than that of the Wishart maximum likelihood method.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期294-298,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60872075) 东南大学优秀博士学位论文基金资助项目(YBJJ0908)
关键词 极化合成孔径雷达 灰度共生矩阵 主成分分析 polarimetric synthetic aperture radar gray-level co-occurrence matrix principle component analysis
  • 相关文献

参考文献11

  • 1Bodnar O,Bodnar T,Okhrin Y.Surveillance of the covariance matrix based on the properties of the singular Wishartdistribution. Computational Statistics . 2009 被引量:1
  • 2Gonzalez A,Dorronsoro J R.Natural conjugate gradient training of multilayer perceptrons. Neurocomputing . 2008 被引量:1
  • 3Tan Y,Tan M J.Global asymptotical stability of continuous-time delayed neural networks without global Lipschitz activationfunctions. Communications in Nonlinear Science and Numerical Simulation . 2009 被引量:1
  • 4Zhang Y D,Wu L N.Pattern recognition via PCNN and Tsallis entropy. Sensors . 2008 被引量:1
  • 5Kamran Ullah Khan,杨建.Polarimetric Synthetic Aperture Radar Image Classification by a Hybrid Method[J].Tsinghua Science and Technology,2007,12(1):97-104. 被引量:2
  • 6Zhang Y D,Wu L N.Stock market prediction of S&P500via combination of improved BCO approach and BP neural network. ESWA . 2009 被引量:1
  • 7G.R.J. Cooper and D.R. Cowan.The use of textural analysis to locate features in geophysical data. Computers and Geosciences . 2005 被引量:1
  • 8Tien C L,Lyu Y R,Jyu S S.Surface?atness of optical thin films evaluated by gray level co-occurrence matrix and entropy. Applied Surface Science . 2008 被引量:1
  • 9Zhang Y D,Wu L N.Weights optimization of neural network via improved BCO approach. PIER . 2008 被引量:1
  • 10Lee J S,Grunes M R,Kwok R.Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution. International Journal of Remote Sensing . 1994 被引量:1

二级参考文献10

  • 1Chen K S,,Huang W P,Tsay D H, et al.Classification of multifrequency polarimetric SAR imagery using a dynamiclearning neural network[].IEEE Trans Geosci Remote Sens- ing.1996 被引量:1
  • 2Chen C T,Chen K S,Lee J S.The use of fully polarimetric information for the fuzzy neural classification of SAR im- ages[].IEEE Trans Geosci Remote Sensing.2003 被引量:1
  • 3Lee J S,,Grunes M R,Kwok R.Classification of multi-look polarimetric SAR imagery based on complex Wishart dis- tribution[].International Journal of Remote Sensing.1994 被引量:1
  • 4Baraldi A,,Blonda P,Satalino G, et al.RBF two-stage learning networks exploiting supervised data in the selection of hidden unit parameters: An application to SAR data classi- fication[].Proc IGARSS.2000 被引量:1
  • 5Du L,Lee J S,Mango S A.Texture segmentation of SAR images using the wavelet transform[].Proceedings of International Geoscience and Remote Sensing Sym- posium (IGARSS’).1992 被引量:1
  • 6Hagan M T,Demuth H B,Beale M.Neural Network De- sign[]..1996 被引量:1
  • 7Kong J A,Swartz A A,Yueh H A, et al.Identification of terrain cover using the optimum polarimetric classifier[].J Electronmagn Waves Applicat.1988 被引量:1
  • 8Alberga V.Comparison of polarimetric methods in image classification and SAR interferometry applications [Disserta- tion]. http://archiv.tu-chemnitz.de/pub/ 2004/0125/ index. html . 2004 被引量:1
  • 9Jolliffe I T.Principal Component Analysis[]..2002 被引量:1
  • 10Cloude S R,Pottier E.An entropy based classification scheme for land applications of polarimetric SAR[].IEEE Transactions on Geoscience and Remote Sensing.1997 被引量:1

共引文献1

同被引文献48

  • 1韩最蛟,万世基.纹理谱在雷达图像非监督纹理分类中的应用[J].遥感技术与应用,1996,11(2):60-64. 被引量:3
  • 2韩震,金亚秋.ERS-2 SAR和Landsat ETM+数据融合提取崇明东滩典型地物信息与分类[J].海洋环境科学,2006,25(3):21-24. 被引量:9
  • 3Gnanadurai D,Sadasivam V,Paul Tiburtius Nishandh J,et al.Un-decimated double density wavelet transform based speckle reduction inSAR images[J].Computers&Electrical Engineering,2009,35(1):209-217. 被引量:1
  • 4Wu L N,Wei G.A new classifier for polarimetric SAR images[J].Progress in Electromagnetics Research,2009,94(Compendex):83-104. 被引量:1
  • 5Kanevsky M B.Synthetic aperture radar[M].Radar Imaging of theOcean Waves.Amsterdam,Elsevier.2009:99-157. 被引量:1
  • 6Vilardo G,Ventura G,Terranova C,et al.Ground deformation due totectonic,hydrothermal,gravity,hydrogeological,and anthropicprocesses in the Campania Region(Southern Italy)from PermanentScatterers Synthetic Aperture Radar Interferometry[J].Remote Sens-ing of Environment,2009,113(1):197-212. 被引量:1
  • 7Leshkevich G A,Nghiem S V.Satellite SAR Remote Sensing of GreatLakes Ice Cover,Part 2.Ice Classification and Mapping[J].Journalof Great Lakes Research,2007,33(4):736-750. 被引量:1
  • 8Wang S,Wu L.PSONN used for Remote-Sensing Image Classification[J].Journal of Computational Information Systems,2010,6(13):4417-4425. 被引量:1
  • 9Nilubol C,Mersereau R M,Smith M J T.A SAR Target Classifier U-sing Radon Transforms and Hidden Markov Models[J].Digital SignalProcessing,2002,12(2-3):274-283. 被引量:1
  • 10Medina C,Gomez-Enri J,Alonso J J,et al.Water volume variationsin Lake Izabal(Guatemala)from in situ measurements and ENVISATRadar Altimeter(RA-2)and Advanced Synthetic Aperture Radar(ASAR)data products[J].Journal of Hydrology,2010,382(1-4):34-48. 被引量:1

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部