期刊文献+

一种基于改进遗传RBF神经网络的传感器动态特性补偿算法 被引量:19

A Dynamic Compensation Algorithm Based on Improved Genetic-RBF Neural Network for Sensor
下载PDF
导出
摘要 为了改善传感器的动态特性,减小系统测量误差,分析了传感器动态性能补偿的基本原理,提出了一种基于改进型遗传算法(IAGA)和RBF神经网络相结合的补偿算法,给出了用IAGA-RBF补偿算法建立的数学模型,并应用到瓦斯传感器的补偿环节。实验证明,该补偿算法具有响应速度快、计算精度高和工作频带宽的特点,多项动态特性指标都得到了较大的改善,能够有效地用于传感器的动态特性补偿。 To improve the sensor’s dynamic performance, and reduce errors in systematic measurement, the principle of sensor’s dynamic performance compensation is analyzed. A kind of improved genetic algorithm(IAGA) and the RBF(Radial Basis Function) neural network in the compensation algorithm is proposed. The mathematical model with the IAGA-RBF compensation algorithm is given and applied to the gas sensor compensation unit. Experiments show that the compensation algorithm is of fast response, high accuracy and wide working band, a number of dynamic indicators are also largely improved, which can effectively compensate for the dynamic performance of the sensor.
出处 《传感技术学报》 CAS CSCD 北大核心 2010年第9期1298-1302,共5页 Chinese Journal of Sensors and Actuators
基金 安徽高校省级自然科学研究重点项目资助(KJ2010A084)
关键词 传感器 动态特性补偿 遗传算法 RBF神经网络 sensor dynamic compensation Genetic Algorithm radial basis function neural network
  • 相关文献

参考文献14

二级参考文献31

  • 1刘清.神经网络和遗传算法相结合实现非线性传感特性的线性化[J].南京师范大学学报(工程技术版),2002,2(3):11-15. 被引量:4
  • 2陈波,胡念苏,周宇阳,申,赵瑜.汽轮机组监测诊断系统中虚拟传感器的数学模型[J].中国电机工程学报,2004,24(7):253-256. 被引量:24
  • 3王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999.. 被引量:51
  • 4Bernard Mulgrew. Applying radial basis functions[J]. IEEE Signal Processing Magazine, 1996, 13(2) :50--65. 被引量:1
  • 5Licheng Jiao, Lei Wang. A novel genetic algorithm based on immunity [J. IEEE Trans on Systems,M an and Cybernetics, 2000,30 (5) : 552 -- 561. 被引量:1
  • 6Moody J, Darken C. Fast learning in networks of locally-turned processing units[J]. Neural Computation, 1989, 6(1):281-294. 被引量:1
  • 7Karayiannis N B, Mi G W. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques[J].IEEE Trans on Neural Networks, 1997,8(6) : 1492-1506. 被引量:1
  • 8Yao Xin, Liu Yong. New evolutionary system for evolving artifical neural networksp[J]. IEEE Trans on Neural Networks, 1997, 8(3) :694-713. 被引量:1
  • 9Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks[J]. Complex System, 1988, 11(2):321--355. 被引量:1
  • 10徐科军,合肥工业大学学报,1997年,20卷,3期,1页 被引量:1

共引文献209

同被引文献172

引证文献19

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部