期刊文献+

基于GA-RBF神经网络逆的两电机同步控制 被引量:3

Synchronous Control of Two-Motor Based on GA-RBF Neural Network Inverse
下载PDF
导出
摘要 以多变量、非线性、强耦合的两电机同步控制系统为研究对象,提出了基于遗传算法的径向基函数(GA-RBF)神经网络逆的两电机同步控制方法。根据给定的性能指标,采用遗传算法对RBF神经中心进行优化,在此基础上串联RBF神经网络逆与两电机系统,构建复合伪线性系统。这一复杂控制对象即可解耦成转速与张力两个线性子系统,进而通过设计线性闭环调节器实现了解耦控制。实验结果表明,采用GA-RBF神经网络逆的两电机系统,对速度和张力实现了较好的解耦控制,且具有较强的抗干扰能力。 As a multi-variable, nonlinear and strongly coupled research object, a two-motor synchronous control sys- tem was investigated in this paper. A new synchronous control strategy for two-motor system was proposed based on RBF neural network inverse with genetic algorithm. To enhance the system performance, the genetic algorithm was adopted to opti- mize the RBF nerve center,an optimized RBF neural network inverse and a two-motor system was connected in series to form composite preudo-linear system. This two-motor synchronous system can be decoupled into two independent linear subsystems, e. g. , speed and tention types. Moreover, a linear closed-loop adjustor was designed to control each subsystem. The experimental results show that the two-motor synchronous system can be decoupled well for speed and tension based on a GA-RBF neural network inverse system. Also ,the proposed system can deal with external disturbances with strong robustness.
机构地区 江苏大学
出处 《微特电机》 北大核心 2012年第8期53-56,70,共5页 Small & Special Electrical Machines
基金 国家自然科学基金(50907031 51077066)
关键词 神经网络 逆系统 两电机 解耦控制 径向基函数 遗传算法 neural networks inverse system two-motor decoupling control radial basis function (RBF) genetic algo-rithm ( GA )
  • 相关文献

参考文献16

  • 1Michael C A, Safacas A N. Dynamic and vibration analysis of a multimotor DC drive system with elastic shafts driving a tissue pa- per machine [ J ]. IEEE Transactions on Industrial Electronics, 2007,54(4) :2033-2046. 被引量:1
  • 2Abjadi N R, Soltani J,Askari J, et al. Nonlinear sliding-mode con- trol of a multi-motor web-winding system without tension sensor[J]. lET Control Theory & Applications ,2009,3 (4) :419-427. 被引量:1
  • 3Kim J, Park C, Hwang S, et al. Control algorithm for an independ- ent motor - drive vehicle [ J ]. IEEE Transactions on Vehicular Technology,2010,59 (7) :3213-3222. 被引量:1
  • 4Ben M W,Belhadj J,Pietrzak-David M. Sliding mode observer for mono-inverter bi-motors railway traction system [ C ]//Sth Inter- national Multi- Conference on Systems, Signals and Devices (SSD). 2011 : 1-6. 被引量:1
  • 5Yu D C, Liu F, Lai P Y, et al. Nonlinear dynamic compensation of sensors using inverse- model- based neural network [ J ]. IEEE Transactions on Instrumentation and Measurement ,2008,57 (10) : 2364 -2376. 被引量:1
  • 6戴先中,刘国海,张兴华著..交流传动神经网络逆控制[M].北京:机械工业出版社,2007:282.
  • 7Zhao Xinlong, Tan Yonghong. Modeling hysteresis and its inverse model using neural networks based on expanded input space meth- od [ J]. IEEE Transactions on Control Systems Technology,2008, 16(3) :484-490. 被引量:1
  • 8孙玉坤,任元,黄永红.磁悬浮开关磁阻电机悬浮力与旋转力的神经网络逆解耦控制[J].中国电机工程学报,2008,28(9):81-85. 被引量:33
  • 9宣光银,胡丹,车畅.基于RBF神经网络的SVPWM研究[J].微特电机,2011,39(9):45-47. 被引量:3
  • 10夏轩,许伟明.改进的粒子群算法对RBF神经网络的优化[J].计算机工程与应用,2012,48(5):37-40. 被引量:16

二级参考文献67

共引文献76

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部