期刊文献+

基于不同行为的两分群交换粒子群优化算法 被引量:2

Particle Swarm Optimization Algorithm for Two Sub-swarms Exchange Based on Different Behaviors
下载PDF
导出
摘要 为了寻找复杂多峰函数的全局最优解,在标准粒子群优化算法的基础上,提出一种基于不同行为的两分群交换粒子群优化算法。该算法将微粒分成大小相同的2个种群,不同种群采用不同进化模型。利用不同进化模型具有不同进化行为的特点,两分群相互影响并促进。该方法可以保持种群多样性,降低陷入局部极值的可能性。对一些复杂函数的仿真结果表明,该算法易于找到全局最优解。 In order to locate the global optimum of complex multimodal function, on the basis of standard Particle Swarm Optimization(PSO) algorithm, this paper proposes a two sub-swarms exchange PSO algorithm based on different behaviors. The particles are divided into two swarms in the same size. Different swarms adapt different evolution models. By using the characteristics that different evolution models have different evolution behaviors, the two sub-swarms influence and promote each other. This method can maintain diversity of population and reduce the possibility of local minimum, Simulation results of some complex functions show that the algorithm can easily find the global optimum solution.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第7期176-178,共3页 Computer Engineering
基金 国家自然科学基金资助项目(50539020) 江西省自然科学基金资助项目(2007GZS1056) 江西省教育厅科技基金资助项目(GJJ10630)
关键词 粒子群优化 种群多样性 全局最优解 Particle Swarm Optimization(PSO) diversity of population global optimum solution
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of IEEE lnt'l Conf. on Neural Networks. Perth, Australia: IEEE Service Center Piscataway, 1995: 1942-1948. 被引量:1
  • 2Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proc. of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Service Center Piscataway, 1995: 39-43. 被引量:1
  • 3Shi Yuhui, Eberhart R. A Modified Particle Swarm Optimizer[C]// Proc. of IEEE World Congress on Computational Intelligence. Anchorage, USA: [s. n.], 1998: 69-73. 被引量:1
  • 4孙辉,张忠梅,葛寒娟.微粒群算法在改进多元线性回归上的应用[J].计算机工程与应用,2007,43(3):43-44. 被引量:9
  • 5林川,冯全源.一种新的自适应粒子群优化算法[J].计算机工程,2008,34(7):181-183. 被引量:48
  • 6陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. 被引量:23
  • 7Parsopoulos K E, Vrahatis M N. Recent Approaches to Global Optimization Problems Through Particle Swarm Optimization[J]. Natural Computing, 2002, 1(2/3): 235-306. 被引量:1
  • 8Kennedy J. Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Perfomaance[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, USA: [s. n.], 1999: 1931-1938. 被引量:1

二级参考文献17

共引文献75

同被引文献18

  • 1陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. 被引量:23
  • 2Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Networks. Perth, Australia: IEEE Press, 1995: 1942-1948. 被引量:1
  • 3Clerc M, Kennedy J. The Particle Swarm-explosion, Stability, and Convergence in a Multi-dimensional Complex Space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 4Parsopoulos K E, Vrahatis M N. UPSO: A Unified Particle Swarm Optimization Scheme[C]//Proc. of ICCMSE'04. Attica, Greece:VSP Int'l Science Publishers, 2004: 868-873. 被引量:1
  • 5Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 204-210. 被引量:1
  • 6Zheng Xiangwei, Liu Hong. A Hybrid Vertical Mutation and Self-adaptation Based MOPSO[J]. Computers and Mathematics with Applications, 2008, 57(8): 2030-2038. 被引量:1
  • 7Ehrlich P R, Raven P H. Butterflies and Plants: A Study in Coevolution[J]. Evolution, 1964, 18(4): 586-608. 被引量:1
  • 8Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255. 被引量:1
  • 9Kennedy J, Eberhart R C. Particle Swarm Optimization[C]// Proc. of IEEE International Conference on Neural Net- works. Piscataway, USA: IEEE Press, 1995: 1942- 1948. 被引量:1
  • 10Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer[C]//Proc. of IEEE International Conference on Evolutionary Computation. Piscataway, USA: IEEE Press, 1998: 69-73. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部