期刊文献+

基于雁群启示的粒子群优化算法 被引量:23

GeesePSO:An Efficient Improvement to Particle Swarm Optimization
下载PDF
导出
摘要 粒子群优化(PSO)算法是一类新兴的随机优化技术,其思想来源于人工生命和演化计算理论。PSO通过粒子追随个体极值和全局极值来完成优化。本文借鉴生物界中雁群的飞行特征,给出了一种改进的PSO算法。该算法一方面将粒子排序,每个粒子跟随其前面那个较优粒子飞行,保持了多样性;另一方面使每个粒子利用更多其他粒子的有用信息,加强粒子之间的合作与竞争。用3个基准函数对新算法进行实验,结果表明,新算法不仅具有更好的收敛精度和更快的收敛速度,而且能更有效地进行全局搜索。 particle swarm optimization (PSO) is a new stochastic optimization technique originating from artificial life and evolutionary computation. The algorithm completes the optimization through following the personal best solution of each particle and the global best solution of the whole swarm. In this paper, an improved algorithm is proposed using the characteristics of the flight of geese for reference. The improved algorithm has superiority over PSO; for one thing, it keeps the population various by ordering all the particles and making each particle fly following its anterior particle; for another thing, it strengthens cooperation and competition between particles by making each particle share more useful information of the other particles. Three benchmark functions are tested and the experimental results show that the new algorithm not only significantly speed up the convergence, but also effectively solve the premature convergence problem.
出处 《计算机科学》 CSCD 北大核心 2006年第11期166-168,191,共4页 Computer Science
关键词 群体智能 粒子群优化 惯性权重线性下降 雁群飞行 Swarm intelligence,Particle swarm optimization,Linearly decreasing inertia weight,Flight of geese
  • 相关文献

参考文献9

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [A]. In: Proceedings of the IEEE International Conference on Neural Networks [C],1995. 1942-1948 被引量:1
  • 2Eberhart R C, Shi Y H. Particle Swarm Optimization.. Developments, Applications and Resources [A]. In: Proc. Congress on Evolutionary Computation 2001 [C], Piscataway, NJ: IEEE Press, 2001. 81-86 被引量:1
  • 3曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 4Shi Y H, Eberhart R C. A modified Particle swarm optimizer.1998 IEEE International Conference on Evolutionary Computation. Anchorage, Alaska, May 1998. 69-73 被引量:1
  • 5Shi Y H, Eberhart R C. Parameter selection in Particle swarm optimization. Anmlal Conference on Evolutionary Programming. San Diego, March 1998. 591-600 被引量:1
  • 6Shi Y H, Eherhart R C. Empirical study of particle swarm optimization [A]. In: Proceeding of Congress on Evolutionary Computation [C],Piscataway, NJ: IEEE Service Center, 1999. 1945-1949 被引量:1
  • 7Beekman M, Rantnieks FLW. Long-range foraging by the Honey-bee, Apis Mellifera L. Functional Ecologicy, 2000, (14): 490-496 被引量:1
  • 8Wilson E O. Sociobiology: The New Synthesis [M]. Cambridge:Belknap Press, 1975 被引量:1
  • 9Ratnaweera A, Halgamuge S. Self-organizing hierarchical particle swarm optimizer with time varying acceleration coefficients.IEEE Trans Evolutionary Computation, 2004, 8(3): 240-255 被引量:1

同被引文献218

引证文献23

二级引证文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部