期刊文献+

基于不同进化模型的双群交换微粒群优化算法 被引量:3

Particle swarm optimization algorithm of two sub-swarms exchange based on different evolvement model
下载PDF
导出
摘要 针对标准微粒群优化算法(PSO)在全局优化过程中容易陷入局部极值的问题,分析了标准微粒群优化算法早熟收敛的原因,提出了一种新的基于不同进化模型的双群交换技术的改进微粒群优化算法.该方法将微粒分成两个大小相同的分群,其中第一分群采用标准PSO模型进化,第二分群采用cognition only模型进化.两个分群每迭代一次后,将第一分群的适应值最差的微粒与第二分群的适应值最优的微粒进行交换,以提高种群的多样性,改善算法的收敛性.与其它双群算法相比,该算法概念简单,程序实现容易.与标准微粒群优化算法相比,全局寻优能力更强,函数测试结果表明,提出的双群交换微粒群优化算法的收敛性能明显优于标准PSO算法. In order to overcome such drawbacks of basic PSO as falling into local extremum, the reason of premature convergence about basic PSO is analyzed, and an improved PSO algorithm (TSE-PSO) based on two sub-swarms exchange technology is proposed. The particle swarm is divided into two identical sub-swarms ,with the first adopting the basic PSO model, and the second adopting the cognition only model. The worst fitness of the first sub-swarm exchanges with the best fitness of the second one after several iterations, which can increase the information exchange between the particles, improve the diversity of swarm and meliorate the convergence of algorithm. Compared with other PSO based on the two sub-swarms, the algorithm proposed in the paper is easy to implement, and the ability of finding global optima is better than basic PSO. The results of function test indicate that the algorithm has better convergence than the basic PSO.
出处 《南昌工程学院学报》 CAS 2008年第4期1-4,共4页 Journal of Nanchang Institute of Technology
基金 国家自然科学基金资助项目(50539020) 江西自然科学基金资助项目(2007GZS1056) 江西教育厅科技项目(赣教技字[2007]339号)
关键词 微粒群优化算法 种群多样性 优化 particle swarm optimization(PSO) diversity of population optimization
  • 相关文献

参考文献11

  • 1Kennedy J, Eberhart R. Particle swarm optimization[ C ]. IEEE Int'l Conf. on Neural Networks. Perth, Australia, IEEE Service Center Piscataway NJ, 1995 : 1942 - 1948. 被引量:1
  • 2Eberhart R,Kennedy J.A new optimizer using particle swarm theory[ C] .Proc .of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan : IEEE Service Center Piscataway NJ, 1995 : 39 - 43. 被引量:1
  • 3Shi Y, Eberhart R. A modified particle swarm optimizer[ C]. IEEE World Congress on Computational Intelligence. 1998:69- 73. 被引量:1
  • 4Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization[ C]. Proc. of the Congress on Evolutionary Computation, Seoul Korea:IEEE Press,2001 : 101 - 106. 被引量:1
  • 5Van den Bergh F. An analysis of particle swarm optimizers[ D]. PhD thesis. Department of Computer Science, University of Pretoria, South Africa, 2002. 被引量:1
  • 6陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. 被引量:23
  • 7孙辉,张忠梅,葛寒娟.微粒群算法在改进多元线性回归上的应用[J].计算机工程与应用,2007,43(3):43-44. 被引量:9
  • 8吴烈阳,白明明,李敏,孙辉.基于绝对值模型的非线性复方程组微粒群解法[J].南昌工程学院学报,2008,27(1):6-9. 被引量:1
  • 9Eberhart R. Shi Y. Particle swarm optimization:developments, applications and resources[ C]. Proceedings of the IEEE congress on Evolutionary Computtion( CEC2001 ), Seoul, Korea, 2001.81 - 84. 被引量:1
  • 10Kennedy J. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance[ C]. Proceedings of the IEEE Congress on Evolutionary Computation, 1999,7 : 1931 - 1938. 被引量:1

二级参考文献16

共引文献28

同被引文献20

  • 1孙辉,张忠梅,葛寒娟.微粒群算法在改进多元线性回归上的应用[J].计算机工程与应用,2007,43(3):43-44. 被引量:9
  • 2Kennedy J,Eberhart R C.Particle swarm optimization[C] //Proceedings of IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948. 被引量:1
  • 3Shi Y,Eberhart R C.A modified particle swarm optimizer[C] //Proceedings of the IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Press,1998:69-73. 被引量:1
  • 4Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization[C] //Proceedings of the IEEE Congress on Evolutionary Compotation,Seoul,Korea,2001. 被引量:1
  • 5Clerc M.The swarm and the queen:Toward a deterministic and adaptive particle swarm optimization[C] //Proceedings of the Congress on Evolutionary Computation,1999:1951-1957. 被引量:1
  • 6Suganthan P N.Particle swarm optimizer with neighborhood topology on particle swarm performance[C] //Proceedings of the 1999 Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,1999:1958-1962. 被引量:1
  • 7Bergh F,Engelbrecht A P.A cooperative approach to particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):225-239. 被引量:1
  • 8Liang J J,Qin A K,Suganthan P N,et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295. 被引量:1
  • 9Kennedy J.Small worlds and mega-minds:Effects of neighborhood topology on particle swarm performance[C] //Proceedings of the IEEE Congress on Evolutionary Computation,1999,7:1931-1938. 被引量:1
  • 10Kennedy J, Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Net- works, Piscataway, N J, IEEE Service Center, 1995 : 1942-1948. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部