期刊文献+

一种协调勘探和开采能力的粒子群算法 被引量:8

Particle-swarm algorithm coordinating the exploration and the exploitation
下载PDF
导出
摘要 提出一种新的协调勘探和开采能力的粒子群优化算法.该算法将种群分为随机子群和进化子群,随机子群增加了算法全局解空间的勘探能力,在运行过程中通过随机子群进化信息生成解优胜区域指导进化粒子向着最优解子空间逼近.为了提高算法收敛速度,算法只在进化子群进入收敛阶段时才对其进行指导,以防止增加种群多样性导致算法开采能力下降的问题.将此算法与其他改进粒子群算法进行比较,实验结果表明,该算法有较好的全局收敛性,不仅能有效地克服其他算法易陷入局部极小值的缺点,而且算法收敛速度和稳定性都有显著提高. A novel particle-swarm optimization(PSO) algorithm which coordinates the exploration ability and the exploitation ability(EEPSO) is presented.This algorithm divides the population of the swarm into the evolutionary sub-swarm and the randomized sub-swarm.During the evolution,the randomized sub-swarm reinforces the global space-exploration ability of the PSO algorithm,and uses the multi-species evolution information to generate the best-result-value space,guiding the particles of the evolutionary sub-swarm to approach this space.In order to improve the convergence rate,the guidance will be effective only when the evolutionary sub-swarm particles are in the convergence status.This limits the diversity of the population swarm,preventing the reduction in exploitation ability.The comparison experiments have been made between the proposed approach with the dissipative PSO and other cooperative particle swarm algorithm.The experimental results show that the proposed method not only effectively solves the premature convergence problem,but also significantly speeds up the convergence and improves the stability.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第5期636-640,共5页 Control Theory & Applications
基金 中国博士后科学基金资助项目(20090450119) 中国博士点新教师基金资助项目(20092304120017) 黑龙江省博士后科学基金资助项目(LBH-Z08227)
关键词 粒子群算法 勘探和开采 随机子群 优胜区域 particle swarm algorithm exploration and exploitation randomized sub-swarm the best result value space
  • 相关文献

参考文献12

二级参考文献30

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3现代数学应用手册编委会.概率统计与随机过程卷(第一版)[M].北京:清华大学出版社,2000.276-302. 被引量:1
  • 4王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107. 被引量:1
  • 5Kennedy J,Eberhart R C.Particle Swarm Optimization[A].IEEE Int Conf on Neural Networks[C].Perth Australia,1995:1942-1948. 被引量:1
  • 6Kennedy J.Small Worlds and Mega-minds:Effects of Neighborhood Topology on Particle Swarm Performance[A].Proc of the Congress on Evolutionary Computation[C].Washington DC,1999:1931-1938. 被引量:1
  • 7Gwo-Ching Liao,Ta-Peng Tsao.Application Embedded Chaos Search Immune Genetic Algorithm for Short-term Unit Commitment[J].Electric Power Systems Research,2004,71(2):135-144. 被引量:1
  • 8KENNEDY J, EBERHART R. Particle swarm optimization[ C ]//Proc of IEEE Int Conf on Neural Networks. Piscataway,NJ: IEEE Press, 1995 : 1942 - 1948. 被引量:1
  • 9EBERHART R, KENNEDY J. A new optimizer using particles warm theory [ C ]// Proc of the 6th Int Sympsium on Micromachine and Human Science. Piscataway, NJ: IEEE Press,1995:39-43. 被引量:1
  • 10KENNEDY J.Tile particle swarm: Social adaptation of knowledge[ C ]//Proc of IEEE Int Conf on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1997:303 -306. 被引量:1

共引文献697

同被引文献79

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部