期刊文献+

基于K-均值聚类的协同进化粒子群优化算法 被引量:3

Cooperatively coevolving particle swarms optimization on k-means cluster algorithm
下载PDF
导出
摘要 针对粒子群优化(PSO)算法优化高维问题时,易陷入局部最优,提出一种基于K-均值聚类的协同进化粒子群优化(KMS-CCPSO)算法。该算法通过引入K-均值算法扩大种群的局部搜索范围,采用柯西分布和高斯分布相结合的方法更新粒子的位置。实验结果表明,该算法具有较好的优化性能,其优势在处理高维问题上更为明显。 Aimed at particle swarm optimization(PSO)algorithm is easy to fall into local optimal problems for optimizing a high-dimensional population, a new cooperative coevolving particle swarm optimization on K-means cluster(KMS-CCPSO)algorithm is put forward. In the proposed algorithm, the subspace of local search range is designed by K-means algorithm,and the new points’ position and velocity in the search space is relied on Cauchy and Gaussian distributions. The experimental results suggest that the proposed algorithm has better optimization performance, its advantage on the large-scale population optimization problem is more apparent.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第22期61-65,140,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61305017) 江苏省自然科学基金项目(No.20130154) 江苏高校优势学科建设工程资助项目
关键词 协同进化 K-均值 高维优化 粒子群优化 局部最优 cooperative co-evolution k-means high-dimensional optimization particle swarm optimization local optimal
  • 相关文献

参考文献15

  • 1Kennedy J, Eberhartr C.Particle swarm optimization[C]// Proc of IEEE Int Conf on Neural Networks.Perth: IEEE Piscataway, 1995 : 1942-1948. 被引量:1
  • 2Parsopoulos K E, Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimiza- tion[J].Natural Computing,2002,1(2/3) :235-306. 被引量:1
  • 3Poll R, Kennedy J, Blaekwell T.Particle swarmoptimization an overview[J].Swarm Intelligence, 2007,1 ( 1 ) : 33-57. 被引量:1
  • 4Shi Y,Eberhart R.A modified particle swarm optimizer[C]// Proceedings of International Conference on Evolutionary Computation, Anchorage, Alaska, 1998 : 69-73. 被引量:1
  • 5Zhan Z H,Zhang J,Li Y,et al.Adaptive particle swarm optimization[J].IEEE Trans on Systems,Man, and Cyber- netics-Part B :Cybernetics,2009,39(6) : 1362-1381. 被引量:1
  • 6徐冰纯,葛洪伟,王燕燕.基于多种群多模型协同进化的粒子群优化算法[J].计算机工程,2013,39(5):200-203. 被引量:6
  • 7Gies D, Rahmat-Samii Y.Particle swarm optimization for reconfigurable phase-differentiated array design[J].Micro- wave and Optical Technology Letters,2003,38(3) : 168-175. 被引量:1
  • 8Ursem R K,Vadstrup EParameter identification of induc- tion motors using differential evolution[C]//The 2003 Con- gress on Evolutionary Computation, IEEE, 2003,2 : 790-796. 被引量:1
  • 9Foli K, Okabe T, Olhofer M, et al.Optimization of micro heat exchanger: CFD, analytical results and multiobjective evolutionary algorithms[J].Int J Heat Mass Transfer,2006, 49(5/6) : 1090-1099. 被引量:1
  • 10Potter M A,De Jong K A.A cooperative coevolutionary approach to function optimization[C]//Proceedings of the Third Intemation Conference on Parallel Problem Solving from Nature,Jerusalem,Israel, 1994:249-257. 被引量:1

二级参考文献11

共引文献5

同被引文献24

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部