期刊文献+

一种改进的粒子群优化快速聚类算法 被引量:15

Improved PSO-based fast clustering algorithm
下载PDF
导出
摘要 提出了一种改进的基于粒子群优化的快速K均值算法,有效克服了K均值算法对初始聚类中心敏感和容易陷入局部最优从而影响聚类效果等缺点.与已有的粒子群优化聚类算法相比,该算法通过对样本各维属性进行规范化,预先计算样本的相异度矩阵,提出了一种简化的粒子的编码规则,基于相异度矩阵进行粒子群优化K均值聚类,在保证聚类效果的基础上,有效降低了计算的复杂度.在多个UCI数据集上的实验结果表明,该算法是有效的。 This paper presents an improved particle swarm optimization based fast K-means algorithm which effectively overcomes the shortcomings of the K-means algorithm such as sensitive to initial cluster centroid and easiness to fall into local optimum so as to affect the clustering results. Compared with the existing particle clustering algorithm, is algorithm first normalizes the attributes of all the samples, and then computes the dissimilarity matrix. We propose simplified particle encoding rules and use PSO-based K-means clustering based on the dissimilarity matrix to ensure the basis for the clustering effect and reduce computational complexity. Experimental results on several UCI data sets validate the advantages of the proposed algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2012年第5期61-65,78,共6页 Journal of Xidian University
基金 国家科技支撑计划资助项目(2012BAH01F05) 国家自然科学资金资助项目(61173091)
关键词 粒子群优化 聚类 K均值 相异度 适应度 PSO clustering K-Means dissimilarity fitness
  • 相关文献

参考文献13

  • 1Han J W, Kamber M. Data Mining: Concepts and Techniques [M]. 2nd Ed. San Francisco: Morgan Kaufmann Publishers, 2001: 398-440. 被引量:1
  • 2Pena J M, Lozano J A, Larranaga P. An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm[J]. Pattern Recognition Letters, 1999, 20(10): 1027-1040. 被引量:1
  • 3赵恒,杨万海,张高煜.模糊K-Harmonic Means聚类算法[J].西安电子科技大学学报,2005,32(4):603-606. 被引量:6
  • 4赵峰,张军英,刘敬.核最优变换与聚类中心的算法[J].西安电子科技大学学报,2009,36(1):127-133. 被引量:3
  • 5蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:189
  • 6Frey B J, Dueck D. Clustering by Passing Messages between Data Points [J]. Science 2007, 315(5814) : 972-976. 被引量:1
  • 7Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//Proc of IEEE Internal Con{erence on Neural Networks. Perth: IEEE, 1995: 1942-1948. 被引量:1
  • 8Rana S, Jasola S, Kumar R. A Review on Particle Swarm Optimization Algorithms and Their Applications to Data Clustering[J]. Artificial Intelligence Review, 2011, 35(3) : 211-222. 被引量:1
  • 9van der Merwe D W, Engelbrecht A P. Data Clustering Using Particle Swarmoptimization [C]//Proc of Evolutionary Computation. Cambella: IEEE, 2003: 215-220. 被引量:1
  • 10Esmin A A A, Pereira D L, de Araujo F P A. Study of Different Approach to Clustering Data by Using the Particle Swarm Optimization Algorithm [C]//IEEE World Congress On Computational Intelligence. Hawail: IEEE, 2008: 1817- 1822. 被引量:1

二级参考文献60

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 3Anil K J, Robert P W D, Mao Jianchang. Statistical Pattern Recognition: a Review [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37. 被引量:1
  • 4Muller K B, Mika S, Ratsch G, et al. An Introduction to Kernel-based Learning Algorithms[J]. IEEE Trans on Neural Networks, 2001, 12(2) : 181-201. 被引量:1
  • 5Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 6Scholkopf B, Smola A J, MOiler K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem [J]. Neural Computation, 1998, 10(6): 1299-1319. 被引量:1
  • 7Mika S, Ratsch G, Weston J. Fisher Discriminant Analysis with Kernels [C]//Neural Networks Signal Processing Proc IEEE. Piscataway: Institute of Electrical and Electronics Engineers Inc, 1999: 41-48. 被引量:1
  • 8Baudat G, Anouar F. Kernel-based Methods and Function Approximation [C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2001: 1244-1249. 被引量:1
  • 9[1]Wu Kuolung,Yang Minshen.Alternative c-means clustering algorithms.Pattern Recognition,2002,35(10):2267-2278 被引量:1
  • 10[2]G Hamerly,C Elkan.Alternatives to the K-means algorithm that find better clustering.In:Proc of the ACM Conf on Information and Knowledge Management (CIKM),2002.600-607 被引量:1

共引文献315

同被引文献141

引证文献15

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部