期刊文献+

基于原子曲线拟合的字典学习的信号去噪方法

Signal Denoising Method Based on Atom Curve Fitting Improved Dictionary Learning
下载PDF
导出
摘要 在信号去噪问题中,利用K-means Singular Value Decomposition(K-SVD)等经典字典学习算法,对信号进行稀疏分解与信号重构,不能有效的消除噪声影响。引入了非线性最小二乘和粒子群优化的方法对经典的字典学习去噪方法进行了改进。利用K-SVD算法进行字典训练;利用非线性最小二乘的方法对字典中的每一个原子进行拟合,得到修正后的字典;利用粒子群优化的方法求解信号的稀疏表示,最终得到重构信号。通过实验证明,该方法去除噪声的效果相较于K-SVD和RLS-DLA(递归最小二乘字典学习算法)有明显提高。 In signal denoising problems, using K-SVD and other classic dictionary learning algorithm can not effectively eliminate the noise impact. The method made some amendments for classical dictionary learning by applying nonlinear least squares curve fitting and particle swarm optimization. K-SVD algorithm was used to train the dictionary. Nonlinear least-squares approach was used to fit every atom in the dictionary. Particle swarm optimization method was used to solve the sparse representation of the signal. The reconstructed signal was obtained. The experimental results show that, the denoising effects of the proposed method apparently has increased compared with K-SVD and RLS-DLA.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第12期2935-2941,共7页 Journal of System Simulation
基金 国家自然科学基金(61372136)
关键词 字典学习 去噪 粒子群优化 信号重构 曲线拟合 dictionary learning denoising particle swarm optimization signal reconstruction curve fitting
  • 相关文献

参考文献13

  • 1王文波,张晓东,汪祥莉.基于主成分分析的经验模态分解消噪方法[J].电子学报,2013,41(7):1425-1430. 被引量:33
  • 2王纵虎,刘志镜,陈东辉.一种改进的粒子群优化快速聚类算法[J].西安电子科技大学学报,2012,39(5):61-65. 被引量:15
  • 3Donoho. D. L.De-noising by Soft-Thresholding[].IEEE Transactions on Information Theory.1995 被引量:3
  • 4A. Pizurica,W. Philips.Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Transactions on Image Processing . 2006 被引量:1
  • 5Portilla J,Strela V,Wainwright M J,et al.Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing . 2003 被引量:1
  • 6Zhang, Lei,Bao, Paul,Wu, Xiaolin.Multiscale LMMSE-based image denoising with optimal wavelet selection. IEEE Transactions on Circuits and Systems for Video Technology . 2005 被引量:1
  • 7Aharon, Michal,Elad, Michael,Bruckstein, Alfred.K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing . 2006 被引量:2
  • 8Elad, Michael,Aharon, Michal.Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing . 2006 被引量:1
  • 9Rubinstein, R.,Peleg, T.,Elad, M.Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model. Signal Processing . 2013 被引量:1
  • 10Jiang Zhuolin,Lin Zhe,Davis L S.Label consistent KSVD:Learning a discriminative dictionary for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2013 被引量:1

二级参考文献30

  • 1张国英,沙芸.基于约束的粒子群聚类算法[J].计算机研究与发展,2007,44(z2):192-197. 被引量:2
  • 2刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 3赵恒,杨万海,张高煜.模糊K-Harmonic Means聚类算法[J].西安电子科技大学学报,2005,32(4):603-606. 被引量:6
  • 4Han J W, Kamber M. Data Mining: Concepts and Techniques [M]. 2nd Ed. San Francisco: Morgan Kaufmann Publishers, 2001: 398-440. 被引量:1
  • 5Pena J M, Lozano J A, Larranaga P. An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm[J]. Pattern Recognition Letters, 1999, 20(10): 1027-1040. 被引量:1
  • 6Frey B J, Dueck D. Clustering by Passing Messages between Data Points [J]. Science 2007, 315(5814) : 972-976. 被引量:1
  • 7Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//Proc of IEEE Internal Con{erence on Neural Networks. Perth: IEEE, 1995: 1942-1948. 被引量:1
  • 8Rana S, Jasola S, Kumar R. A Review on Particle Swarm Optimization Algorithms and Their Applications to Data Clustering[J]. Artificial Intelligence Review, 2011, 35(3) : 211-222. 被引量:1
  • 9van der Merwe D W, Engelbrecht A P. Data Clustering Using Particle Swarmoptimization [C]//Proc of Evolutionary Computation. Cambella: IEEE, 2003: 215-220. 被引量:1
  • 10Esmin A A A, Pereira D L, de Araujo F P A. Study of Different Approach to Clustering Data by Using the Particle Swarm Optimization Algorithm [C]//IEEE World Congress On Computational Intelligence. Hawail: IEEE, 2008: 1817- 1822. 被引量:1

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部