期刊文献+

基于联合字典的3D图像去块效应方法

3D Images Deblocking Based on Joint Dictionary
下载PDF
导出
摘要 本文针对3D图像压缩过程产生的块效应,提出了一种基于联合字典的3D图像去块效应方法。该方法主要包括字典训练、字典联合和去块效应三个阶段。在字典训练阶段,采用字典学习方法分别训练得到过完备的彩色字典和深度字典;在字典联合阶段,根据测试图像的稀疏特性和构造的彩色和深度字典,求出对应的彩色与深度联合字典;在去块效应阶段,通过估计重构误差阈值,并根据联合字典对图像进行去块效应处理。实验结果表明,本文提出的方法能够有效地去除编码图像的块效应,且得到较高的虚拟视点绘制质量。 To eliminate the blocking artifacts caused by three-dimensional (3D) image compression, a deblocking method is proposed based on joint dictionary. The proposed method mainly includes three stages: dictionary training, dictionary jointing and deblocking. At the dictionary training stage, an over-complete color dictionary and depth dictionary are trained respectively with state-of-the-art dictionary learning method. At the dictionary jointing stage, for a testing sample, its corresponding color-depth joint dictionary is constructed based on the sparse coefficients with respect to the learnt color and depth dictionaries. At the deblocking stage, by estimating the reconstruction error threshold, a deblocking operation is performed to get the reconstructed 3D images with respect to the learnt joint dictionary. Experimental results demonstrate that the proposed method can effectively reduce the blocking artifacts of the compressed 3D images and generate high-quality synthesized images.
出处 《光电工程》 CAS CSCD 北大核心 2016年第8期64-69,75,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(61271021)资助
关键词 信号处理 3D图像 字典训练 字典联合 去块效应 information processing three-dimensional (3-D) image dictionary training dictionary jointing blocking artifact reduction
  • 相关文献

参考文献18

  • 1Wiegand T,Sullivan G J,Bjntegaard G,et al.Overview of the H.264/AVC Video Coding Standard[J].IEEE Transactions on Circuits and Systems for Video Technology(S1051-8215),2003,13(7):560-576. 被引量:1
  • 2ITU-T Rec.H.264-ISO/IEC 14496-10 AVC,JVT G050,Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification[S].2003. 被引量:1
  • 3LUO Ying,Rabab K Ward.Removing the Blocking Artifacts of Block-based DCT Compressed Images[J].IEEE Transactions on Image Processing(S1057-7149),2003,12(7):838-842. 被引量:1
  • 4WANG Ci,XUE Ping,LIN Weisi,et al.Fast Edge-preserved Post Processing For Compressed Image[J].IEEE Transactions on Circuits and Systems for Video Technology(S1051-8215),2006,16(9):1142-1147. 被引量:1
  • 5Lim T,Ryu J,Kim J,et al.Adaptive Deblocking Method using a Transform Table of Different Dimension DCT[J].IEEE Transactions on Consumer Electronics(S0098-3063),2008,54(4):1988-1995. 被引量:1
  • 6Youla D,Webb H.Image Restoration by the Method of Convex Projections:Part 1-Theory[J].IEEE Transactions on Medical Imaging(S0278-0062),1982,1(2):81-94. 被引量:1
  • 7YANG Yongyi,Galatsanos N P,Katsaggelos A K.Projection-based Spatially Adaptive Reconstruction of Block-transform Compressed Image[J].IEEE Transactions on Image Processing(S1059-7149),1995,4(7):896-908. 被引量:1
  • 8ZOU Jujia,YAN Hong.A Deblocking Method for BDCT Compressed Images Based on Adaptive Projections[J].IEEE Transactions on Circuits and Systems for Video Technology(S1051-8215),2005,15(3):430-435. 被引量:1
  • 9秦振涛,杨武年,潘佩芬.基于稀疏表示和自适应字典学习的“高分一号”遥感图像去噪[J].光电工程,2013,40(9):16-21. 被引量:7
  • 10JUNG Cheolkon,JIAO Licheng,QI Hongtao.Blocking Artifact Reduction in DIBR using an Overcomplete 3D Dictionary[J].Advances in Multimedia Modeling,Springer Berlin Heidelberg(S0302-9743),2013,7732:283-294. 被引量:1

二级参考文献12

  • 1Luisier F, Blu T. SURE-LET Multichannel Image Denoising:Interscale Orthonormal Wavelet Thresholding[J]. IEEE Transactions on Image Processing(S1057-7149), 2008, 17(4):482-492. 被引量:1
  • 2Donoho D L. Compressed sensing[J]. IEEE Trans on Information Theory(S0018-9448), 2006, 52(4):1289-1306. 被引量:1
  • 3SUN Haojun, WANG Shengrui, JIANG Qingshan. FCM-Based model selection algorithms for determining the number of cluster[J]. Pattern Recognition(S0031-3203), 2004, 37(10):2027-2037. 被引量:1
  • 4Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denosing[J]. ACM Transactions on graphics(S0070-0301), 2003, 22(3): 950-953. 被引量:1
  • 5Kim S. PDE-based image restoration:a hybrid model and color image denoising[J]. IEEE Transactions on Image Processing(S1057-7149), 2006, 15(5):1163-1173. 被引量:1
  • 6Dabov K, Foi A, Katakovik V, et al. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering[J]. IEEE Transactions on Image Processing(S1057-7149), 2007, 16(8):2080-2095. 被引量:1
  • 7Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing(S1057-7149), 2006, 15(12):3736-3745. 被引量:1
  • 8Anand Amitabh Sharma, Akshay Girdhar. Undecimated Wavelet Based New Threshold Method for Speckle Noise Removal in Ultrasound Images[C]// International Conference on Modeling Simulation and Control, Singapore, Sep 16-18, 2011, 10: 137-145. 被引量:1
  • 9WANG Yiqing, Jean-Michel Morel. SURE Guided Gaussian Mixture Image Denoising[J]. SIAM Journal on Imaging Sciences(S1936-4954), 2013, 6(2):999-1034. 被引量:1
  • 10王相海,李放,宋传鸣.局部自适应混合模型的遥感图像去噪算法[J].中国图象图形学报,2011,16(7):1289-1296. 被引量:8

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部