期刊文献+

字典学习和稀疏表示的无监督语音增强算法 被引量:1

Unsupervised speech enhancement algorithm based on dictionary learning and sparse representation
下载PDF
导出
摘要 针对非结构噪声难以去除的问题,基于字典训练和稀疏表示提出一种无监督语音增强算法。该算法通过构造过完备字典并使用带噪语音样本对其进行训练来实现。首先指出K-奇异值分解算法(K-SVD)存在的不足并提出一种新的改进的字典训练算法:K-双边随机投影算法(K-BRP);然后使用K-BRP算法不断更新字典矩阵和相应的增益系数矩阵,从被非结构化噪声所污染的带噪语音中提取出结构性强的纯净语音。大量实验结果表明,由于训练样本考虑到了语音信号的时频域局部结构特征,所提算法能够很好地消除随机噪声,并且在低信噪比情况下仍然能够保持较高的语音质量和可懂度。 To solve the difficulty in enhancing the speech contaminated by unstructured noise, an unsupervised speech enhancement algorithm based on dictionary training and over-completely representation was proposed. In the enhancement stage, the technique alternated between sparse coding of the gain matrix and updating the dictionary atoms by using the K- Bilateral Random Projection (K- BRP) algorithm which is a faster modification of the K- Singular Value Decomposition (K- SVD) algorithm. In this way, clean speech was extracted from the noisy speech. Extensive experimental results show that the proposed algorithm achieves better performance in terms of speech quality and speech intelligibility even in low Signal-to-Noise Ratio (SNR) condition by considering the local time-frequency characteristics of speech.
出处 《计算机应用》 CSCD 北大核心 2014年第A01期257-261,共5页 journal of Computer Applications
基金 江苏省自然科学基金资助项目(BK2012510)
关键词 语音增强 无监督 字典训练 稀疏表示 K-SVD算法 speech enhancement unsupervised dictionary learning sparse representation K- SVD algorithm
  • 相关文献

参考文献17

  • 1WILSON K, RAJ B, SMARAGDIS P, et al. Speech denoising using nonnegative matrix factorization with priors[ C]//Proceedings of the 2008 IEEE International Conference on Acoustics, Speech, and Sig- nal Processing. Piscataway: IEEE Press, 2008:4029 -4032. 被引量:1
  • 2SMARAGDIS P. Convolution speech bases and their application to supervised speech separation [ J]. IEEE Transactions on Audio, Speech and Language Processing, 2007, 15(1) : 1 - 12. 被引量:1
  • 3SIGG C D, DIKK T, BUHMANN J M. Speech enhancement using generative dictionary learning[ J]. IEEE Transactions on Audio, Speech and Language Processing, 2012, 20(6):1698 -1712. 被引量:1
  • 4SCHMIDT M N, LARSEN J, HSIAO F-T. Wind noise reduction u- sing non-negative sparse coding[ C]// IEEE Workshop on Machine Learning for Signal Processing. Piseataway: IEEE Press, 2007:431 - 436. 被引量:1
  • 5SMITH L N, ELAD M. Improving dictionary learning: multiple dic- tionary updates and coefficient reuse[ J]. IEEE Signal Processing Letters, 2013, 20(1) :79-82. 被引量:1
  • 6AHARON M, ELAD M, BRUCKSTEIN A. K- SVD: an algorithm for designing overcompletedietionaries for sparse representation[ J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311 - 4322. 被引量:1
  • 7ZHOU T, TAO D. GoDec: randomized low-rank & sparse matrix decomposition in noisy ease[ C]//Proceedings of the 28th Interna- tional Conference on Machine Learning. Piscataway: IEEE Press, 2011:33-40. 被引量:1
  • 8ZHOU T, TAO D. Shifted subspaces tracking on sparse outlier for motion segmentation[ C]// Proceedings of the 23th International Joint Conference on Artificial Intelligence. Monlo Park: AAAI Press, 2013:1946 - 1952. 被引量:1
  • 9ROWEIS S. EM algorithms for PCA and SPCA[ C] // Proceedings of the 1997 Conference on Advances in Neural Information Processing System. Cambridge: MIT Press, 1998:626-632. 被引量:1
  • 10LOIZOU P C. Speech enhancement: theory and practice[ M]. [ S. l. ] : Taylor and Francis, 2007. 被引量:1

二级参考文献16

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2李杰,刘章军.基于标准正交基的随机过程展开法[J].同济大学学报(自然科学版),2006,34(10):1279-1283. 被引量:37
  • 3Donoho D. Compressed sensing[J]. IEEE Trans Inf Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles, exact signal reconstruction from highly in- complete frequency information[J]. IEEE Trans Inf Theory, 2006, 52(2): 489-509. 被引量:1
  • 5Mallat S, Zhang Z. Matching pursuits with time-fre- quency dictionaries[J]. IEEE Trans Signal Process,1993, 41: 3397-3415. 被引量:1
  • 6Davis G, Mallat S, Avellaneda M. Adaptive greedy approximation[J]. Constr Approx, 1997, 13 (1) .. 57- 98. 被引量:1
  • 7Donoho D, Huo X. Uncertainty principles and ideal atomic decompositions [J]. IEEE Trans Inf Theory, 2001, 47.. 2845-2862. 被引量:1
  • 8Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases [J]. IEEE Trans Inf Theory, 2003, 49:1579-1581. 被引量:1
  • 9Peyre G C. Best basis compressed sensing[J ]. IEEE Trans Signal Process, 2010, 58(5).. 2613-2622. 被引量:1
  • 10Griffin A, Tsakalides P. Compressed sensing of au- dio signal using multiple sensors[C]//16 th European Signal Processing Conference. Lausanne, Switzer- land:[s, n. ], 2008.. 16:1-4. 被引量:1

共引文献9

同被引文献13

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部