期刊文献+

具有趋向向量及迁移特征的协同PSO算法

Cooperative PSO Algorithm with Appulsive Vector and Migration Character
下载PDF
导出
摘要 为提高PSO算法的搜索能力,提出一种协同粒子群算法CPSO-ADS。引入种群分布熵及群落差异度评价,用以有效初始化群落。给出趋向向量修正粒子的位置向量,提高算法收敛速度。运用占优子空间概念,通过评价子空间搜索价值确定种群的迁移方向。实验结果表明,该算法搜索性能稳定,能以大概率收敛到全局最优。 This paper proposes a novel cooperative Particle Swarm Optimization(PSO) algorithm(CPSO-ADS) to improve the search ability of PSO algorithm.To initialize the cluster effectively,population scatter entropy strategy and cluster differential degree strategy are introduced.To improve the convergence rate,it amends the position vector of a particle by producing an appulsive vector.And to ascertain the migration direction of a population,it proposes the concept of dominant subspace to evaluate the value of the special subspace.Experimental result shows that algorithm has stable search ability and can converge to the global optimum with large probability.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期185-187,193,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60970004) 山东省科技攻关计划基金资助项目(2009GG10001008) 济南市高校院所自主创新基金资助项目(200906001)
关键词 种群分布熵 趋向向量 占优子空间 协同进化 粒子群优化算法 population scatter entropy appulsive vector dominant subspace co-evolution Particle Swarm Optimization(PSO) algorithm
  • 相关文献

参考文献9

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Networks. Perth, Australia: IEEE Press, 1995: 1942-1948. 被引量:1
  • 2Clerc M, Kennedy J. The Particle Swarm-explosion, Stability, and Convergence in a Multi-dimensional Complex Space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 3Parsopoulos K E, Vrahatis M N. UPSO: A Unified Particle Swarm Optimization Scheme[C]//Proc. of ICCMSE'04. Attica, Greece:VSP Int'l Science Publishers, 2004: 868-873. 被引量:1
  • 4Mendes R, Kennedy J, Neves J. The Fully Informed Particle Swarm: Simpler, Maybe Better[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 204-210. 被引量:1
  • 5Zheng Xiangwei, Liu Hong. A Hybrid Vertical Mutation and Self-adaptation Based MOPSO[J]. Computers and Mathematics with Applications, 2008, 57(8): 2030-2038. 被引量:1
  • 6孙辉,吴烈阳,白明明,李敏.基于不同行为的两分群交换粒子群优化算法[J].计算机工程,2010,36(7):176-178. 被引量:2
  • 7吴斌,蔡红,樊树海,蒋南云.双倍体差分进化粒子群算法在VRPSDP中的应用研究[J].系统工程理论与实践,2010,30(3):520-526. 被引量:10
  • 8Ehrlich P R, Raven P H. Butterflies and Plants: A Study in Coevolution[J]. Evolution, 1964, 18(4): 586-608. 被引量:1
  • 9Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255. 被引量:1

二级参考文献20

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部