期刊文献+

k次减法补数的因子函数均值的渐近公式 被引量:6

On the Additive k-th Power Part Residue Function of Asymptotic Formula
下载PDF
导出
摘要 应美籍罗马尼亚数论专家F.Smarandache教授的要求,研究类似于Smarandache补数函数的性质.利用初等方法和解析方法,获得了本文定义的k次减法补数均值性质及渐近公式,扩展了F.Smarandache教授在《Only Problems,Not solutions》一书中相关问题的研究工作. On the American nationality Romania theory of numbers expert Professor F. Smarandache request, the research is similar in Smarandache makes up the several letters number the nature, used the primary method and the analysis method, obtained this article to define makes up the number average value nature and the asymptotic formula in the k power of exponent, had developed Professor F. Smarandache in "Only Problems, Not solutions" in a book 29 question research works.
作者 黄炜 张转社
出处 《海南大学学报(自然科学版)》 CAS 2010年第1期11-14,共4页 Natural Science Journal of Hainan University
基金 国家自然科学基金项目(10271093) 陕西省自然科学基金项目资助(SJ08A28)
关键词 k次减法补数 均值 渐近公式 additive k-th power part residue function mean value asymptotic formula.
  • 相关文献

参考文献8

  • 1SMARANDACHE F. Only Problem, Not solutions [ M ]. Chicago : Xiquan Publishing House, 1993. 被引量:1
  • 2XU Zhe-feng. On the additive k-power complements: Research on Smarandache Problems in Number Theory, Xi'an, February 11 - 14,2004[C]. USA: Hexis,2004. 被引量:1
  • 3潘承洞,潘承彪.解析函数论基础[M].北京:科学出版社,1997. 被引量:8
  • 4HARDY G H, RANLNANUJAN S. The normal number of prime factors of a number n [ J ]. Quarterly Journal Mathematics : 1917(48) :78 -92. 被引量:1
  • 5张文鹏.关于正整数的立方部分数列[J].咸阳师范学院学报,2003,18(4):5-7. 被引量:14
  • 6ZHANG Xiao-beng, LOU Yuan-bing. The Smarandache irrational root sieve sequences :Research on Smarandache Problems in Number Theory, Xi'an, February 11 - 14,2004 [ C ]. USA : Hexis ,2004. 被引量:1
  • 7杨存典,刘端森,李军庄.关于k次加法补函数的因子函数的均值公式[J].纯粹数学与应用数学,2007,23(3):347-350. 被引量:4
  • 8LIU Hong-yan, LIU Yuan-bing. A note on the 29th Smarandaches problem [J]. Smarandache Notions Journal, 2004(14) : 156 - 158. 被引量:1

二级参考文献6

  • 1潘承洞 潘承彪.解析数论基础[M].北京:科学出版社,1997.98. 被引量:16
  • 2Yi yuan.On the asymptotic property of divisor function for additive complement[J].Research on Smarandache Problems in Number Theory,2004,1:65-68. 被引量:1
  • 3Xu Zhefeng.On the additive k-power complements[J].Research on Smarandache Problems in Number Theory,2004,1:13-16. 被引量:1
  • 4Zhu weiyi.On the k-power complement and k-free number sequence[J].Smarandache Notion Journal,2004,14:66-69. 被引量:1
  • 5Yao wili.On the k-power complements sequence[J].Smarandache Notion Journal,2004,14:271-273. 被引量:1
  • 6Pan Chengdong,Pan Chengbiao.The Elementary Number Theory[M].Bijing:Beiijng University Press,2003. 被引量:1

共引文献23

同被引文献32

  • 1朱伟义.关于整数n的k次补数[J].数学学报(中文版),2005,48(4):817-820. 被引量:14
  • 2王阳.关于立方幂补数除数和函数的性质[J].兰州理工大学学报,2006,32(4):153-154. 被引量:2
  • 3沈虹.一个新的数论函数及其它的值分布[J].纯粹数学与应用数学,2007,23(2):235-238. 被引量:31
  • 4潘承洞,潘承彪.解析函数论基础.北京:科学出版社,1997:60. 被引量:5
  • 5Xu Zhefeng. On the additive k-th power complements[M]//Research on Smarandache Problems in Number Theory, Phoenix, USA: Hexis, 2004: 13-16. 被引量:1
  • 6Apostol T M. Introduction to analytic number theory[M]. New York: Springer-Verlag, 1976: 134-170. 被引量:1
  • 7Smarandache F. Only Problems, Not solutions. Chicago: Xiquan Publishing House, 1993. 被引量:1
  • 8XU Zhe-feng. On the Additive k-Power Complements:Research on Smarandache Problems in Number Theory [C]. USA: Hexis,2004. 被引量:1
  • 9DING Li-ping, On the Additive k-Power Complements [M]//ZHANG Wen-peng, LI Jun-zhang, LIU Duan-sen. Re- search on Smarandaehe Problems in Number Theory. Hexis : Phoenix, AZ, 2005 : 23 - 27. 被引量:1
  • 10MA Jin-ping. On the Mean Value of the k-th Power Part Residue Function [M]//Research on Smarandache Problems in Number Theory, Hexis..Phoenix,AZ,2005 :37 -40. 被引量:1

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部